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A new approach to signal processing of analytical time-
domain data is presented. It consists in identifying the
types of noise, characterizing them, and subsequently
subtracting them from the otherwise unprocessed data
set. The algorithms have been successfully applied to
three classes of noise commonly found in analytical
signals: spikes, ripples, and baseline drift. Traditional
filters have been used as an intermediary step to detect
and remove spikes in the signal with 96.8% success.
Adaptive ensemble average subtraction has been devel-
oped to remove nonstationary ripples that have similar
time scales as the signal of interest. This method in-
creased the signal-to-noise ratio by up to 250% and led
to minimal distortion of the signal, unlike conventional
Fourier filters. Finally the removal of baseline drift has
been achieved by subtraction of a mathematical model for
the baseline. These three methods are generic, compu-
tationally fast, and applicable to a wide range of analytical
techniques. Full Matlab codes and examples are included
as Supporting Information.

Experimental data are usually complicated by noise that may
be due to interfering physical or chemical processes, instrumental
noise, environmental noise, or any number of causes which result
in spurious fluctuations of the signal generated by the detector.
The main goal of the analytical chemist is therefore to devise
techniques that provide a maximum signal-to-noise ratio (SNR).
Efforts generally focus on maximizing the signal by improving
the sensitivity, precision, selectivity, and limit of detection of the
system. While the production of signal is well understood, the
production of noise is not and solutions to minimize the sources
of noise are not well-defined. Some recommendations include
cleanliness to reduce the chemical noise, efficient shielding, and
grounding to protect from environmental and instrumental noise.1

However, in real world conditions, analytical systems are fre-
quently operated very close to their limits of detection, where the
signal-to-noise ratio (SNR) is small. This means that an otherwise
small uncertainty in the background noise can induce a large error
in the evaluation of the signal of interest.

One approach to this is a hardware approach where a second
“sentinel” sensor, that responds to interfering signals but not the
analytical signal, is placed alongside the primary sensor. Modern

operational amplifiers can then efficiently reject common-mode
noise at all frequencies within a wide operational bandwidth. This
has been used successfully for implanted electrochemical
biosensors.2,3 Such an approach is very useful but depends on
the availability of a suitable sentinel sensor that can be combined
with the analytical system. Alternative approaches to increase the
SNR of analytical signals have been based on digital signal
processing methods. The most widely used smoothing filters
among analytical chemists include least-squares polynomial fitting
popularized by Savitzky and Golay in 1964,4 and a wide range of
Fourier-based filters.5 Historically, a solution to noise has been
very heavy damping or filtering. Such an approach relies on a
characteristic time scale for the signal of interest, tsignal, being so
long that a simple low-pass filter effectively removed all types
of noise. However, with the move of analytical instrumentation
to “real-time” or rapidly responding approaches such as
capillary electrophoresis, lab-on-a-chip, microbore columns, and
flow injection analysis, this is no longer tenable. The problem
increasingly becomes the selection of the optimal smoothing
parameters (polynomial degree and width of the moving data
window for Savitzky-Golay filters and spectral cutoff for
Fourier filters) that will achieve the best compromise between
noise reduction and signal fidelity. Recent works have reported
methods to select the optimal smoothing parameters, based
on the maximization of the Shannon information entropy,6 or
statistical tests, including Pearsons’s correlation7 and F
distribution8,9 on the residuals.

Unlike these methods that aim at crushing the noise within
the signal and assume that the noise has a Gaussian distribiution
of zero mean,6,8-12 this paper describes a range of practical
solutions to improve the SNR by recognizing and removing real
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world noise from the otherwise unprocessed signal. We here
address three different types of noise that are frequently found
in experimental data. The general approach consists in using prior
knowledge about the noise to fit different noise types and subtract
them from the otherwise unprocessed signal. We can thereby
achieve both maximal noise reduction and minimal signal distor-
tions. The three noise types amenable to this approach are
classified according to their characteristic time scales relative to
that of the signal of interest, tsignal: (1) Spikes are short signals
with time scales (tspike) very much shorter than the signal of
interest, tspike , tsignal. They can be larger or smaller in
magnitude than the signal of interest. We will here distinguish
“stereotypical spikes” that have a reproducible pattern, with a
readily identifiable and constant time scale from other sorts of
spikes that can include simple and complex spikes (i.e., clusters
of simple spikes) of varying time scale. Stereotypical spikes
can be inherent to the experimental process, such as sample
injection in an analysis stream, while other spikes can be
caused by various sources, such as noise on the power line,
imperfection of electronic circuits, and environmental condi-
tions. (2) Ripples are quasi-periodic signals that frequently have
a similar time scale tripple to the signal of interest. Ripples can
have any magnitude, distribution, and shape and can be
nonstationary. They can arise, for example, from piston pump
flow fluctuations, thermostatic valves, or cardiac and respiratory
induced fluctutations in clinically related measurements. (3)
Baseline drifts are signals that vary at a time scale that is large
compared to the signal of interest: tdrift . tsignal. In particular it
is assumed that the gradient of the drift is much less than the
gradient of the signal of interest.

The characteristic time scale of the signal of interest tsignal is
data-dependent. It can in general be defined as the rate limiting
factor in the process, either 90% response time of the detector,
the typical time scale of the measured phenomenon, or the
full width at half-maximum (fwhm) for chromatographic peaks.

Three generic methods to remove these three classes of noise
are described here, and their applications to a flow injection
analysis assay is discussed as an example. They are relevant to a
wide range of analytical time-domain signals where similar
problems with noise are found.

EXPERIMENTAL SECTION
Data Processing. All algorithms discussed in the following

sections were written using Matlab 7.2 and run on a Power
Macintosh dual G5 computer (Apple). The codes and full details
about the algorithms are given in the Supporting Information.

The programs are written as Matlab functions and can be
directly implemented on the data provided: (1) the function
despiking1 removes stereotypical spikes; (2) the function despik-
ing2 removes nonstereotypical spikes; (3) the function derippling
removes nonstationary ripples and uses the children functions
findtemplate, synchronisetemplate, and updatetemplate; (4) the
function detrending removes baseline drift and the exponential
fitting is performed in expfit.

The original data used to generate the figures in this paper
and some additional signals are available in the Sup-
porting Information: (1) Stereotyp1.mat and Stereotyp2.mat are
examples of stereotypical spikes; (2) NonStereotyp1.mat and
NonStereotyp2.mat are examples of nonstereotypical spikes; (3)

Ripples1.mat, Ripples2.mat, Ripples3.mat are examples of ripples;
(4) Trend.mat is an example of trends. The window lengths used
for the despiking method (stereotypical spikes) and the training
data sets utilized for the derippling method are included in the
Matlab data files.

Experimental Data Collection. The denoising algorithms can
be applied to any type of experimental data. As an illustration in
this paper, they are applied to data recorded using rapid sampling
microdialysis (rsMD). This technique allows online measurements
of the concentrations of glucose and lactate in the brains of
patients with head injury. It basically consists in enzyme recogni-
tion of the analytes followed by a mediated flow injection analysis
(FIA). A full description of the system can be found in refs 13
and 14.

RESULTS AND DISCUSSION
Despiking Method. Algorithms. Spikes often mask details of

the true data, which can lead to misidentification of the signal of
interest and subsequently significant error in the quantification
of the signal. To avoid these false readings, it is essential to remove
the spikes reliably without introducing distortion into the rest of
the curve.

Most of the methods used for noise reduction are not effective
for spike removal. Methods such as Savitzky-Golay (SG) smooth-
ing15 or adaptive degree polynomial filter8 fail in the presence of
spikes, as a result of trying to fit a polynomial function across
discontinuities. Similar problems occur when using Fourier based
algorithms, such as Butterworth or Chebyshev filters,16 because
the filters produce ripples at sharp edges. In fact, these methods
result in the propagation of the spike to the preceding and
following points and change the signal shape undesirably.

We here propose an alternative method that does not use the
filtered data as the denoised signal but as an intermediate step
for the localization of the spikes within the unprocessed raw data
set. It is a two-step procedure that achieves both maximal removal
of spikes and minimal distortions of the signal of interest: (1)
detection of the position and width of a spike or spike train and
(2) removal of the spikes in the original unprocessed signal by
excision, linear interpolation, and smoothing of the identified spike
region.

The main difficulty is the reliable identification of spikes.
Manual detection of spikes is an easy operation, but automatic
detection of short pulses is more complicated, especially when
the data are complicated by other forms of random noise. Several
different types of spike detection methods are described in the
literature, usually based on outlier detection algorithms, as the
spike may be treated as an outlier from the correct experimental
signal. These methods are generally based on examining higher
moments, in practice skewness and kurtosis.17 Nonlinear smooth-
ing algorithms have also been applied to Raman spectra.18,19 We
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here propose two alternative methods that are easy to implement
and fast to compute. They both exploit the main property of spikes:
their short time scale, tspike, as compared to the data. The
algorithm is presented in detail in the flowchart “Algorithm 1:
Despiking” in Scheme 1, and the Matlab codes are given in
Supporting Information.

The first step is the detection of the spikes in the data. Two
methods have been developed. The first one is applicable to
stereotypical spikes whose time scale tspike can be directly
estimated from the data set. It is based on locating the spikes
by the subtraction of a quadratic SG filtered curve from the
original data set. Using the known tspike, one can significantly
attenuate the spikes using a window width Wspike G tspike,
typically Wspike ) 1.5tspike. However, the use of such a window
also leads to significant distortions of smaller scale signal
features, such as the very top of a chromatographic peak, thus
reducing the corresponding peak height. Here we subtract the
filtered trace from the original trace to obtain an intermediate
signal in which only regions of fast dynamics, in particular
spikes, and smoothing errors remain. The second method is
applicable to any sort of spikes. It is based on the derivative of
the signal. As spikes are rapidly varying signals relative to the
signal of interest, their slopes are generally larger than those
of the signal of interest. So when the derivative of the signal is
taken, large components will be ascribed to spikes in the
original data. In both methods the spikes are subsequently
detected using a simple thresholding detection in the difference

signal (step 1a) or the derivative signal (step 1b). We have
used Otsu’s algorithm20 to determine the optimum threshold
as this is simple and fast to compute. With the use of a
histogram of the difference signal, it calculates the threshold
that best separates two classes of data points: spikes and other
forms of random noise in our case. The optimum threshold is
defined as the one that minimize the within-class variance.

The second step is the removal of the detected spikes. Each
identified spike is first excised from the original signal, and the
excised section is replaced by a linear interpolation. The resulting
signal is then smoothed using a traditional quadratic SG filter with
a window length W ) 3Wspike. The output is then used to replace
only the spikes in the original unprocessed signal (step 2).

Application and Discussion. The first detection method is
computationally faster than the second one but requires setting
the window length Wspike using a priori knowledge of tspike. The
minimal window length Wspike should be Wspike ) 1.5tspike. If a
smaller window length is used, some spikes will be missed in
the subtraction step. When using a longer window length, a
somewhat larger region of the data set is affected by the spike
removal step (step 2). For data where the signal of interest is
composed of peaks, the window length Wspike should be less
than 0.7 fwhm of the narrowest peak of interest. This causes
minimal distortion of the peaks by an SG filter according to
ref 21. In cases where tspike is not easily determined, then the
second method is preferred.

The polynomial order of the SG filter used in the spike
detection step (step 1a) is not critical as signal integrity is not
necessary in the spike identification step. It is preferable to select
the order of the polynomial that will best approximate the signal
of interest for the second SG filter of width W2 used in the spike
removal step (step 2). Adaptive degree polynomial methods
can be used for this purpose.8 For chromatographic data, a
quadratic filter is usually suitable, although the choice is also
not very critical since it affects only a very limited segment of
the final signal.

This despiking procedure has been successfully applied to
clinical data recorded with rsMD. An illustrative case is given in
Figure 1 for both stereotypical spikes (Figure 1a) and nonstereo-
typical spikes (Figure 1b).

In both cases, the original signal (upper trace) is distorted by
the presence of spikes. In the case of nonstereotypical spikes in
particular, the spikes are quite diverse with different magnitudes,
both positive and negative. The output of the despiking methods
is shown in the lower traces. A total of 100% of the spikes are
removed in the case of stereotypical spikes, while 93% of the
nonstereotypical spikes are removed. Even in the worst-case
scenario, where a spike occurs at exactly the same time as a peak,
the algorithm performs well. This can be seen in Figure 1b in
the peak at approximately 50 s. In practice, out of the 10 clinical
data records processed this way, which represents approximately
19 days of data, i.e., 108 data points with about 104 spikes, the
despiking method eliminated 90% of the nonstereotypical spikes
and 98% of the stereotypical spikes. Overall, 96.8% of all the
spikes in our data were removed. From an analytical perspec-
tive, the despiking procedure enables reliable automatic

(20) Otsu, N. IEEE Trans. Syst., Man, Cybernet. 1979, 9, 62–66.
(21) Willson, P. D.; Edwards, T. H. Appl. Spectrosc. Rev. 1976, 12, 1–81.

Scheme 1. Algorithm 1: Despiking
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estimation of the peak heights using an automatic local
maximum detection algorithm embedded in the data acquisition
software (Chart 5.6, ADInstruments). In the original data, most
of the analyte peaks detected by the algorithm are in fact spikes
(upper trace). In the despiked data (lower trace), all of the
analyte peaks are identified correctly. This proved invaluable
for further clinical interpretation of the data collected with
rsMD.22

Comparison to Other Methods. Another spike removal technique
is the moving median filter. In this method, the central value of
an interval sliding along the curve is substituted by the median
of the data in the interval. Originally described by Tukey,23 it has
been applied to remove stereotypical spikes. However, it leads to
considerable distortions of the curve shape, giving flat-topped
truncated peaks,24 which has restricted its use in practice. We
nevertheless tested it in the despiking method for stereotypical

spikes (available in the Supporting Information). We replaced the
SG filter used for the spike detection step with a moving median
filter with a window length half of Wspike to effectively remove
them. Then, we subtracted this filtered data from the original
data set and removed the identified spikes as described
previously. It gave very similar results to our method, with 98%
spike removal and less than 5% signal distortion. However, it
was computationally less efficient, usually 10 times slower than
SG filters, which agrees with Stone’s observations.24

A more recent algorithm designed for spike removal,25 based
on a gross error statistical test, has been successfully used on
voltammetric data, giving satisfactory spike removal while not
distorting the curve. However, like the median filter, it requires
sorting the data into either ascending or descending order, which
makes it computationally slower than the despiking method
presented here. In comparison to other despiking methods we
have tried, the main advantage of our method is its computational
speed, which makes it appropriate for real-time online processing
as data are collected.

Derippling Method. Algorithm. Ripples are defined as quasi-
periodic fluctuations. They are neither random nor sinuslike and

(22) Feuerstein, D.; Manning, A.; Hashemi, P.; Bhatia, R.; Tolias, C.; Fabricius,
M.; Parker, K.; Strong, A.; Boutelle, M. In Monitoring Molecules in
Neuroscience: Proceedings of the 12th International Conference on in Vivo
Methods 2008; Phillips, P. E. M., Sandberg, S. G., Ahn, S., Phillips, A. G.,
Eds.; Vancouver, Canada, 2008; pp 39-42.

(23) Tukey, J. W. Exploratory Data Analysis; Addison-Wesley: Reading, MA, 1977.
(24) Stone, D. C. Can. J. Chem. 1995, 73, 1573–1581. (25) Jakubowska, M.; Kubiak, W. W. Electroanalysis 2005, 17, 1687–1694.

Figure 1. Application of the despiking method to real clinical data. (a) Stereotypical spikes: upper trace, example of data sets with stereotypical
spikes. The characteristic time scale of the spikes, tspike, can readily be determined by inspection of the data: tspike) 0.835 s or 167 data points
(sampling at 200 Hz). Using an SG filter with a window length Wspike ) 1.5tspike ) 1.25 s or 251 data points, enables 100% spike detection.
These are then removed from the original unprocessed signal. Lower trace: output of the despiking technique for stereotypical spikes. Only the
spike region surrounding a detected spike has been smoothed while the rest of the signal has been left intact. (b) Nonstereotypical spikes:
upper trace, example of data with nonstereotypical spikes. Within 5 min of data, there are more than 20 spikes, with different widths, amplitudes,
and patterns. The dots above the trace show the output of a local maximum detection algorithm (from Chart 5.6, ADInstruments). It fails to
detect the analyte peaks, confusing them with the spikes. Lower trace: output of the despiking method for nonstereotypical spikes applied to the
data above. A total of 93% of the spikes have been successfully removed. The remaining spikes have much lower amplitudes. As a result, the
same local maximum detection technique successfully read 100% of the analyte peaks and hence was able to evaluate their respective peak
heights for further analysis.
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can be nonstationary, changing in morphology and distribution
with time. As a further complication, they can have a characteristic
time scale tripple very similar to that of the signal of interest. In
the case of a periodic signal, for example, chromatographic
peaks, the similar time scale between the signal and ripple can
lead to aliasing of the ripples on the peaks of interest. This
affects the baseline and, over time, all parts of the peak. This
in turn leads to slow variations in measures of the peak, such
as height and peak area. To limit this problem, it is important
to remove the ripples without compromising the signal of
interest.

The most commonly used technique to remove periodic noise
is based on Fourier filters.26 This method works reasonably well
when the typical time scale of the signal of interest is long, such
as the broad analyte peaks in the case of traditional liquid
chromatography.27 However, with the introduction of faster
chromatographic methods, the separation between noise and
signal in the spectral domain is not so clear. In this case, it is
very difficult to determine the optimal spectral cutoff that will
remove noise without compromising signal integrity.16 In any case,
Fourier filters will inevitably fail when noise and signal have the
same time scales so that they overlap in the frequency domain.
In such cases any Fourier filter will lead to dramatic distortion of
the signal of interest, especially flattening and broadening of the
analyte peaks, and therefore cannot be used in practice. An
example of the effect of a low-pass Fourier filter is given in Figure
2a (light gray trace on the right panel). Another main drawback
of Fourier filters and other linear filters in general is their limited
success with nonstationary signals.

An alternative method using the quasi-periodicity of the ripples
is proposed here. It consists in estimating the ripples with a
template (obtained by averaging a training data set) that is a good
representation of the noise. This template is then subtracted from
the original unprocessed signal. Careful alignment of the template
onto the signal is required to avoid distortion of the signal of
interest. A flowchart with the details of the algorithm can be found
in “Algorithm 2: Derippling” in Scheme 2.

In case of a change in the signal of interest, such as a
chromatographic peak, occurring at the same time as a ripple, it
is assumed that the ripples are locally repetitive and the previous
aligned ripple is subtracted. This procedure should ensure both
that there is no contribution of the signal of interest when fitting
the underlying ripple and that it gives the best chance of effectively
zeroing the noise on the signal of interest.

Importantly, after each subtraction step, the template shape
is updated to account for any changes in the patterns of the ripples.
The decision to update the template with new ripples is deter-
mined by the variance of the template. This is calculated during
the subtraction step. If this variance is much smaller than the
amplitude of the ripples (typically 10 times smaller than the
amplitude of the ripples), then the template is still adequate for
subtraction. If the variance is above this critical value, then the
template needs to adapt to the new morphology of the ripples. In
this case, new ripples are added to the ensemble as the algorithm
moves along the trace and the “oldest” ripples are removed to
keep the size of the ensemble constant. If, after 20 updates of the

ensemble, the variance is consistently more than half the size of
the ripples, the ripples are not stable enough for this method.

Application and Discussion. The computation of the representa-
tive template requires a training data set with n typical ripples.
For this purpose, it is preferable to have a section of data with no
signal of interest before the actual recording starts, but the
algorithm can be trained using already recorded data as well. Such
training data can be found in the Matlab data files given in the
Supporting Information. The number of ripples needed to have a
good representation of the noise will depend on the initial SNR
and the regularity of the ripples. From our experience, n of the
order of 20 suffices even for poor SNR (less than 3). If the data
set has spikes, the despiking method should be applied first to
avoid the presence of spikes within the training set, which would
otherwise prevent the detection of the periodicity of the ripples.

The template is slightly longer than tripple. This is to ensure
there is a sufficient number of data points overlapping at the
“junction” between two consecutive subtraction steps. From
our experience, a template length of 1.2tripple is sufficient.

Continual updating of the template as the subtraction occurs
ensures that any nonstationarities in the ripples are accom-
modated. The only assumption here is that the ripples superim-
posed on a signal change have a local consistency and a similar
pattern to the ripple just preceding this change.

The derippling method has been applied to 10 clinical traces
and achieved significant enhancement of the signal-to-noise ratio

(26) Paley, R.; Wiener, N. Fourier Transforms in the Complex Domain; American
Mathematical Society: Providence, RI, 1934.

(27) Kaiser, J. F.; Reed, W. A. Rev. Sci. Instrum. 1977, 48, 1447–1457.

Scheme 2. Algorithm 2: Derippling
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(SNR), thus considerably reducing the error when quantifying
the signals. Some examples are presented in Figure 2 (right
panel). The baseline is effectively zeroed by the subtraction step.
All parts of the peak are restored and can be fully fitted by a
double-Gaussian peak function as described in ref 28. The SNR,
calculated as the ratio of peak height over the standard deviation
of the noise, is globally improved by a factor of 2.5 (Figure 2a) to
3.5 (Figure 2b). This does not depend on the initial SNR level,
and the method performs equally well with very low initial SNR
(Figure 2b). The improvement on the SNR has a direct impact
on the analytical assay. It significantly reduces the error when
estimating the magnitude of the peaks. When a calibration with
n ) 5 peaks per concentration is performed, the relative standard
deviation within the peaks (calculated as the standard deviation
of the peak heights over their average absolute amplitude for each
concentration) is reduced by up to 136%. As a result, there is less
than 2% variation instead of 5.4% when the analyte levels reach
250 µM. This means that the limit of detection of the assay
improved from 70 to 25 µM (Figure 2c).

Comparison to Other Methods. As previously mentioned, the
derippling method works well even for nonstationary signals
where traditional linear filters usually fail. Some nonlinear methods
have been developed to overcome the problems associated with
nonstationarity. The most common of these methods is based on
wavelets thresholding. The wavelet schemes involve projecting
the time-domain signal into a wavelet domain where the basis
functions are wavelets (Daubechies or Haar for instance).5

Contrary to sine and cosine (the Fourier basis functions), the
wavelet functions are dually localized in both time and frequency
domains, so that wavelet filters can be used in the time domain.
Smoothing here relies on the fact that the energy of a signal will
often be concentrated in a few coefficients in the wavelet domain
while the energy of noise is spread among all coefficients.29

Wavelet noise filters are constructed by calculating the wavelet
transfer for a signal and then applying an algorithm that deter-
mines which wavelet coefficients should be modified (usually by
being set to zero). Wavelet denoising is very efficient in cases
where the wavelet basis functions best fit noise and signal of
interest. As the bases functions are fixed, they do not necessarily
match the wide variety of real-world analytical signals. Unlike the
wavelet approach, the derippling method developed here is
derived from the recorded noise itself. There is no assumption
about the shape and distribution of the signal, which makes this
method much more versatile and applicable to a much wider range
of signals.

Another approach that is also completely data driven is
empirical mode decomposition (EMD). In this scheme, the modes
are derived from the signal itself, based on the sequential
extraction of energy associated with various intrinsic time scales
of the signal starting from finer temporal scales to coarser ones.30

The problem is that the time scale of the ripples can be the same
as that of the signal of interest, so that the ripples will be in the
same mode as the signal itself and the EMD approach will thereby
fail in separating ripples from signal. The approach used in this
paper avoids this pitfall.

The main advantage of our method is that, once sufficient
training data set has been recorded (which can be prior to the
actual measurement), derippling can be performed in real time
while the wavelet filtering and empirical mode decomposition are
postacquisition approaches that transform the entire data set as
a complete block. Like the despiking method, the derippling
algorithm is computationally fast: it takes approximately 50 s to
process a trace with 106 data points that included about 103

ripples. It is therefore also suitable for online signal processing.
Detrending. Algorithm. For completeness, the same approach

has been used to remove baseline drift, which is noise that has a
characteristic time scale that is longer than that of the signal of
interest, commonly referred to as low-frequency baseline drift.
This has been a main issue in traditional chromatography and a
large number of digital methods have been developed for baseline
correction. These include Fourier-based filters, whereby high-pass
filters can remove the background drift assuming that the
frequency components of this drift are in a lower range than those
of the signal of interest. It was first used in spectroscopy by Atakan

(28) Li, J. Anal. Chem. 1997, 69, 4452–4462.
(29) Barclay, V. J.; Bonner, R. F.; Hamilton, I. P. Anal. Chem. 1997, 69, 78.
(30) Boudraa, A. O.; Cexus, J.; Saidi, Z. Int. J. Signal Process. 2004, 1, 33.

Figure 2. The derippling method significantly improves the signal-
to-noise ratio. (a) Left panel, original unprocessed signal, with a
moderate SNR. Right panel: outputs of a low-pass Fourier filter (cutoff
of 0.1 Hz) (gray line in the background) and of the derippling algorithm
(dark line in the foreground). The Fourier filter effectively attenuate
the ripples but also significantly distorts the peak, making it smaller
and broader. There is no improvement in the signal-to-noise ratio.
The derippling method reduces the ripples and does not affect the
peak shape and height, hence improving the SNR by 250%. (b) Left
panel: original unprocessed signal, with a poor SNR. Right panel:
output of the derippling algorithm. The SNR is improved by 350%,
the peaks are identifiable, and a clear fall and rise in peak heights is
seen. (c) Bar plots of the relative standard deviations for the raw
signals (dark bars) and the derippled signal (light bars) when using
three different standard concentrations for glucose (left panel) and
lactate (right panel). The variations on the peak height estimations in
the derippled data are reduced in the range 38-136%.
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et al.31 The problem is the selection of the filter parameters: if
the frequency cutoff is too low, some residual baseline drift will
remain in the baseline-corrected spectra; if the spectral cutoff is
too high, some of the signal peak frequency components will be
removed along with the baseline and the signal peaks will be
reduced. Another very common approach is based on differentia-
tion. The slopes of the background are in fact generally lower
than those of signal peaks, so taking the first derivative will
discriminate against slowly varying background components
irrespective of their absolute values.32 However, such methods
lead to peak distortions with 90° phase shifts and attenuation of
the signal.33 To limit signal distortion, other methods have been
devised, based on a SG filter subtraction34 or median filter
subtraction.33 With both of these methods, the peaks of interest
are smoothed out using a large window for an SG filter or a
moving median filter. The output of this filter is therefore the
baseline and its drift, without the peaks of interest. When this
filtered data is subtracted from the original signal, it results in
peaks on a flat baseline. The limitation is to determine the right
window length that will preserve the broader peaks while remov-
ing the baseline from the sharper peaks, essentially the same
problem as in high-pass filtering. Many other techniques have
been developed: using wavelet filtering, Gaussian filtering, artificial
neuronal networks, etc. A good review can be found in ref 32.

Here, we propose a strategy that is similar to the homomorphic
procedure described in 2001 by Michel et al.35 It is a two step
process and consists of (1) fitting the noise with a mathematical
function and (2) subtracting this model from the original data.

A huge variety of models can be used, depending on the nature
of the drift, including polynomials, exponentials, or power laws.
Detrending is particularly applicable to chromatography derived
methods, including FIA, capillary electrophoresis, separation
techniques using gradients of phases, where sections of data with
no injection of the sample and only baseline drift alternate with
sections containing the analyte peaks.

Application and Discussion. This method has effectively been
applied to clinical data recorded with rsMD using an exponential
approximation of the baseline drift (I ) B - Ae-(t)/(T) where I is
the drift signal and A, B, and T are constants). The coefficients
A, B, and T were determined using an unconstrained nonlinear
optimization technique based on the Nedler-Mead simplex
technique.36 An example of the results obtained with the
detrending method is shown in Figure 3. The peaks are readily
identifiable and a baseline can be defined to determine the
amplitudes of the peaks and quantify the analyte concentrations
after detrending.

It is worth noting that the model coefficients were recomputed
for each section of baseline drift preceding a section with analyte
peaks. This allows for nonstationarities in the baseline drift.

In this particular example, the despiking and detrending
methods were combined. The first step of the despiking proce-
dure, i.e., the spike identification step, was used to avoid any

spikes in the estimation of the baseline drift. That would have
led to nonconvergence of the Nedler-Mead method.

This ad hoc method can be generalized to other sets of data,
using different modeling functions. It can also be combined
with other methods presented here to remove other types of
noises. In our case, the detrending procedure has allowed the
quantification of high value clinical traces that could not
possibly be analyzed without removal of the drift. However,
other methods for baseline correction may be preferable. This
will depend on factors such as the nature of the measurement
and noise, the magnitude of the signal-to-noise ratio, the

(31) Atakan, A. K.; Blass, W. E.; Jennings, D. E. Appl. Spectrosc. 1980, 34, 369.
(32) Schulze, G.; Jirasek, A.; Yu, M. M. L.; Lim, A.; Turner, R. F. B.; Blades,

M. W. Appl. Spectrosc. 2005, 59, 545–574.
(33) Moore, A. W.; Jorgenson, H. W. Anal. Chem. 1993, 65, 188–191.
(34) Carbonneau, R.; Bolduc, E.; Marmet, P. Can. J. Chem. 1973, 51, 505–509.
(35) Michel, J.; Bonnet, N. Ultramicroscopy 2001, 88, 231–242.
(36) Nedler, J. A.; Mead, R. Comput. J. 1965, 7, 308–313.

Figure 3. Detrending method: (a) Raw data consisting of alternating
15 s of only baseline drift (indicated by the gray block bars) followed
by 15 s of baseline drift with an analyte peak (indicated by the black
block bars). Injection spikes can also be seen every 15 s. (b) Close-
up of 30 s from the trace in part a. The first 15 s are fitted to an
exponential model: I ) B - Ae-(t)/(T) (solid curve). This mathematical
function is subsequently subtracted from the “no injection” interval
and from the following 15 s when the analyte is injected. The
exponential function is re-evaluated each time there is a “no injection”
segment with baseline drift only. (c) Output of this detrending
procedure followed by the despiking method on the data set shown
in part a. The peaks are identifiable and their amplitudes quantifiable
automatically. Derippling could also be applied as the restored flat
baseline show evidence of quasi-periodic ripples.
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computational and programming resources available, and the
time scale for the required calculations.

CONCLUSIONS
We have here presented three different methods to remove

three particular types of noise that are encountered in many
analytical techniques: spikes, quasi-periodic nonstationary ripples,
and baseline drift. All of these techniques are based on identifying
specific patterns of the noise types and then subtracting the fitted
noise from the original unprocessed signal. Key to the success of
the methods presented here is the correct identification of these
noise types based on their time scale relative to the analytical
signal. These filtering methods effectively improve the signal-to-
noise ratio with minimal distortion of the signal of interest. They
can be combined successively or simultaneously for denoising,
permitting reliable subsequent automatic quantification of the data.
Some parameters, including the length of the SG filter for the
despiking procedure, the periodicity of the ripples, and the
mathematical function describing the drift, have to be derived

using a priori knowledge of the noise. In many cases, they can
be easily determined from the recorded noise itself. As these
signal processing tools are fully data-driven with no assumptions
about the signal of interest, they can be applicable to a wide variety
of time domain analytical signals.
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