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Abstract Wave intensity analysis applies methods first

used to study gas dynamics to cardiovascular haemody-

namics. It is based on the method of characteristics solution

of the 1-D equations derived from the conservation of mass

and momentum in elastic vessels. The measured wave-

forms of pressure P and velocity U are described as the

summation of successive wavefronts that propagate for-

ward and backward through the vessels with magnitudes

dP± and dU±. The net wave intensity dPdU is the flux of

energy per unit area carried by the wavefronts. It is positive

for forward waves and negative for backward waves, pro-

viding a convenient tool for quantifying the timing,

direction and magnitude of waves. Two methods, the PU-

loop and the sum of squares, are given for calculating the

wave speed c from simultaneous measurements of P and U

at a single location. Given c, it is possible to separate the

waveforms into their forward and backward components.

Finally, the reservoir-wave hypothesis that the arterial and

venous pressure can be conveniently thought of as the sum

of a reservoir pressure arising from the total compliance of

the vessels (the Windkessel effect) and the pressure asso-

ciated with the waves is discussed.

1 Introduction

Wave intensity analysis was introduced 20 years ago for

the study of cardiovascular dynamics. In many ways it is

a departure from the traditional Fourier methods of ana-

lysis that have dominated the field since the 1960s [7].

It represents the waveforms of pressure and velocity as

successive wavefronts rather than the summation of sinu-

soidal wavetrains. This means that the analysis is carried

out in the time domain rather than the frequency domain

which can be advantageous for many applications.

The analysis is based upon sound mechanical principles,

the conservation of mass and momentum, and rigorous

mathematical analysis. This means that the mathematics

are not always accessible to those whose mathematical

training does not extend to partial differential equations,

eigenvalues and eigenvectors. The results of the analysis,

however, are intuitive and accessible and I will attempt to

demonstrate this in the following. For the non-mathemat-

ical reader, I have marked the sections containing the more

difficult mathematics {detailed mathematics}, and given a

non-mathematical summary of the results at the end of the

section {non-mathematical summary}. It should, there-

fore, be possible to skip these sections, if desired, while

still being able to follow the development of the method.1

2 Foundations

Wave intensity analysis is rooted in the development of gas

dynamics during and after the Second World War. The

advent of supersonic flight, jet engines and rockets required

a new approach to aerodynamics that could explain the

‘new’ phenomena that were being observed; particularly

shock waves. For low Mach number (defined as the speed

of convection divided by the speed of sound, m = U/c)
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flows, air could be considered to be incompressible with

reasonable accuracy, but this was no longer true as we

neared the ‘sound barrier’ when the Mach number

approached and exceeded one. For supersonic and hyper-

sonic flow, it became important to track the propagation of

waves through the flow field. The mathematical tools for

solving these problems were provided nearly a century

earlier by Riemann who introduced the method of char-

acteristics for the solution of hyperbolic equations [16].

Although arteries have complex geometries, for many

purposes it is sufficient to consider them as long, thin tubes;

the 1-D approximation. This approximation ignores the

variation of velocity across the cross-section, necessarily

abandoning the no slip condition at the wall. It is, therefore,

not suitable for the calculation of the detailed distribution

of wall shear stress, for example, but does provide infor-

mation about the axial distribution of pressure and velocity.

2.1 What do we mean by a wave?

Before proceeding to the mathematical theory of wave

intensity, it is necessary to clarify what is meant by a

‘wave.’ Because of the success of impedance methods,

most haemodynamicists think of waves in arteries as

sinusoidal wavetrains, the fundamental element of Fourier

analysis. An example of the Fourier decomposition of a

pressure waveform measured in a human aorta is shown on

the left of Fig. 1. The waveform shown at the top is given

by the summation of the Fourier components which are the

sinusoidal waves at the fundamental and higher harmonic

frequencies shown below. The decomposition is exact if all

of the harmonics are summed, but the higher harmonics are

dominated by noise and the first 16 components, shown in

the figure give an excellent approximation to the original

waveform.

There are, however, other waves such as tsunamis and

shock waves (the sonic boom) that are best described as

solitary waves. For these waves it is more convenient to

consider them as a sequence of small ‘wavelets’ or

‘wavefronts’ that combine to produce the observed wave.

These wavefronts are the elemental waves in wave inten-

sity analysis.2 In the digital era, it is convenient and

accurate to describe these wavefronts as the change

in properties during a sampling period Dt; e.g. dP

= P(t ? Dt) - P(t). Differences such as this are commonly

used in gas dynamics instead of the more familiar differ-

ential because they can cope with discontinuities such as

shock waves where the differential is ill-defined. The dif-

ference, unlike the differential, depends upon the sampling

period and this must be remembered if differences are

used.

The plot on the right of Fig. 1 shows the same pressure

waveform decomposed into 16 successive wavefronts. This

representation of the original waveform is rather crude but

serves to illustrate the principle. Higher resolution can be

obtained simply by using more wavefronts occurring at

smaller intervals during the cardiac period. An exact rep-

resentation of a digitised waveform can be obtained simply

by using one wavefront per sampling period.

This difference in the interpretation of what is meant by

a wave is fundamental to the understanding of wave

intensity analysis. Both Fourier and wave intensity analysis

give unique, complete representations of the measured

waveform and the choice of representation is determined

solely by convenience; wavefronts can be represented by

Fourier components and sinusoidal waves can be repre-

sented by successive wavefronts. To avoid possible

confusion in this work, ‘wave’ will be used in a completely

general way, ‘wavetrain’ will be used to describe sinusoi-

dal waves and ‘wavefront’ will be used to describe the

incremental wavelets.

Finally, it is important to observe that the fact that a

waveform can be decomposed into a particular form does

not imply that that form is in any way intrinsic to the initial

waveform. Any waveform can be decomposed without any

Fig. 1 The decomposition of the pressure waveform measured in a

human aorta into sinusoidal wavetrains (left) and successive wave-

fronts (right). In each figure, the measured pressure is shown at the

top. In the Fourier representation, the fundamental and first 15

harmonics are shown (the mean value is suppressed in this sketch).

The successive wavefronts are obtained by dividing the cardiac period

into 16 time intervals and plotting the change in pressure during the

successive time intervals

2 The elemental wavefronts should not be confused with solitons,

which are solitary wave solutions of the nonlinear Korteweg–de Vries

equation originally derived to model shallow water hydrodynamics.

The soliton is another example of a solitary wave that cannot be

analysed easily using Fourier methods although it can be described

easily as successive wavefronts.
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loss of information in an infinite number of different ways

using any complete, orthogonal basis function or wavelet.

No particular decomposition is inherently better than any

other; their value depends solely on their utility.

3 Is the cardiovascular system in steady-state

oscillation?

It is commonly believed that the cardiovascular system is

normally in steady-state oscillation. This view is promoted

by the standard texts on arterial mechanics [8, 9] and is

reinforced by the observation of very regular, near-peri-

odic behaviour of the arterial pressure during stable

conditions. However, periodic behaviour does not neces-

sarily mean steady-state oscillation and this belief deserves

investigation.

All macroscopic systems experience some form of

damping, be it friction or viscosity, so it is not possible to

have steady oscillations without some form of forcing of

the system. Forced oscillations are divided into two cate-

gories, under-damped oscillations which are characterised

by a slow decay of the oscillations when the forcing

is stopped, and over-damped oscillations which cease

oscillating immediately when the forcing is stopped. The

boundary between these two conditions is termed a criti-

cally damped oscillation. Critical damping is important in

engineering because critically damped systems exhibit the

fastest possible transient between the forced and stationary

state when the forcing starts or stops and most measuring

instruments are designed to exhibit this behaviour to

increase their temporal resolution in transitory states. A

critically damped system will decay to the stationary, sta-

ble state within approximately one period of its natural

oscillation when the forcing is stopped.

As long as a periodic forcing is applied to the system, it

is impossible to tell whether the system is under- or over-

damped because it will continue to oscillate in response to

the forcing. If the forcing is stopped, however, it is very

easy to differentiate between the two conditions: an under-

damped system will continue to oscillate with ever

decreasing amplitude until it finally decays to the new

stationary state while an over-damped system will stop

oscillating immediately and decrease smoothly to the new

stationary state at a rate dependent upon the degree of over-

damping.

Missing or ectopic beats are commonly observed, even

in healthy subjects, when some irregularity in the pacing of

the heart occurs which interrupts the regular contraction of

the heart for a single beat. This ‘natural’ stopping of the

periodic forcing of the arterial system by the heart provides

a convenient way to assess the level of damping in the

cardiovascular system. A typical missing beat measured in

the left main stem coronary artery of a patient undergoing

routine catheterisation is shown in Fig. 2.

After the missing beat we see a smooth continuation of

the exponential fall-off of pressure that is normally

observed during diastole. This is typical of an over-damped

system. There is no hint of a slightly damped oscillation at

the normal heart frequency that would be characteristic of an

under-damped system. This behaviour indicates that the car-

diovascular system is over-damped and, by definition, over-

damped systems cannot exhibit steady-state oscillation.

We must conclude, therefore, that the cardiovascular

system is not in steady-state oscillation. It is probably

better to think of each heart beat as an isolated event that

just happens to occur periodically because of the regularity

of the normal heart beat under constant conditions.

4 The method of characteristics

It is impossible to describe the development of wave

intensity analysis without some discussion of the method of

Fig. 2 Pressure response measured in the left main stem coronary

artery during a missing beat. The top trace shows the pressure in kPa

and the bottom trace shows the simultaneously measured ECG. Just

before 26 s the ECG shows a premature QRS complex resulting in a

contraction of the left ventricle that was barely able to create enough

pressure to open the aortic valve. The small notch on the pressure
signal indicates that the valve was opened very briefly but that there

was negligible blood ejected during that cardiac cycle. The response

to this ‘missing’ beat is a smooth continuation of the exponential fall-

off of pressure that is normally observed during diastole. Following

the missing beat, the ECG is normal and the pressure is close to

normal. The pulse pressure of the beat immediately following the

missing beat has a slightly increased pulse pressure consistent with

the potentiation of the ventricular contraction produced by the

increased filling due to the preceding missing beat (the Frank–Starling

mechanism). There is also a decrease in mean pressure which persists

for about 4–5 beats before the oscillation returns to its state prior to

the missing beat
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characteristics. Although the method is rather complex

mathematically, its results are simple and easy to

comprehend.

{detailed mathematics} The 1-D equations describing

flow in an elastic tube were formulated by Euler [3].

Although they can and have been generalised to consider

viscous effects and compressible fluids, we will consider

only the inviscid, incompressible case treated by Euler. The

conservation of mass applied to a differential element of

the tube requires that the change in volume of the element

is equal to the difference between the volume flow rates

into and out of the element

At þ ðUAÞx ¼ 0

where A is the cross-sectional area of the tube, U is the

velocity averaged over the cross-section, x is the distance

along the tube, t is time and we are using the subscript

notation for partial derivatives. Similarly, the conservation

of momentum requires that the acceleration of the fluid

within the element is equal to the net momentum flux into

the element plus the net force acting on the element due to

the pressure

Ut þ UUx ¼ �
Px

q

where P is the hydrostatic pressure averaged over the

cross-section and q is the density of blood which is

assumed to be constant. These conservation equations

involve three dependent variables A, U and P and so it is

necessary to specify some further relationship between

them. This is provided by a ‘tube law’ which relates the

local area of the tube to the pressure within it. For our

purposes, it is possible to express this relationship in a very

general form

Aðx; tÞ ¼ AðPðx; tÞ; xÞ

This functional equation just says that the local area is

some function of the local pressure which can vary at

different locations along the tube x. It is possible to gen-

eralise the tube law to account for temporal variations in

the local relationship between area and pressure which

would be necessary if, say, the effects of temporally

changing arterial tone were to be considered or if the theory

was being applied to vessels such as the coronary arteries

where the state of the myocardium around the artery is

changing in time. However, this generalisation introduces

considerable complexity into the analysis and is not con-

sidered here for simplicity. Note, however, that the

temporal variation of pressure means that there is still a

temporal variation in the area.

In this development of wave intensity analysis, we

choose to eliminate A and to retain P and U as the inde-

pendent variables, primarily because those are the variables

most frequently measured in the clinic. Other choices may

be more convenient for particular applications. For exam-

ple, in our recent numerical work it has proven to be most

convenient to solve the problem in terms of the volume

flow rate Q = UA and A [4, 6]. Similarly, a clinical

application of wave intensity analysis has been developed

which uses ultrasound measurements of vessel diameter d

and velocity, in which case it is most convenient to express

the theory in terms of d ¼ 4A
p

� �1=2
and U.

With our assumption of the tube law, it is possible to

write the partial derivatives of A

oA

ox

� �

t

¼ APPx þ Ax and
oA

ot

� �

x

¼ APPt where

AP ¼
oA

oP

� �

x

and Ax ¼
oA

ox

� �

P

Note that AP is the local compliance of the artery, i.e. the

local change in area caused by a change in pressure, which

is a measure of the local stiffness of the artery.

Substituting and rearranging terms, the mass and

momentum conservation equations take the form

Pt þ UPx þ
A

AP
Ux ¼ �

UAx

AP

Ut þ
1

q
Px þ UUx ¼ 0

Written in matrix form, the matrix of coefficients of the x-

derivative terms has the eigenvalues

k� ¼ U � A

qAP

� �1=2

which are important for the method of characteristics.

4.1 Wave speed

{detailed mathematics} The square root term in the

equation for the eigenvalues has the dimensions of velocity

and is, as we will see below, the speed at which changes

propagate along the tube; i.e. the wave speed. One of the

advantages of the method of characteristics is that it gives

us an expression for the wave speed in terms of the

physical parameters of the problem. Recognising that D ¼
AP

A is the distensibility of the artery (fractional change in

area with a change in pressure), the definition of the wave

speed reduces to the expression given by Bramwell and

Hill [2]

c ¼ A

qAP

� �1=2

¼ 1
ffiffiffiffiffiffiffi
qD
p

In general, the wave speed will be a function of both

pressure and position in the arteries

c ¼ cðPðx; tÞ; xÞ
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This introduces considerable difficulties in wave inten-

sity analysis and so we generally assume that the wave

speed at any particular position is a constant, i.e. c

= c(x). We will make this assumption implicitly in most

of the following analysis. It should, however, be kept in

mind that it is an approximation to the behaviour of

real arteries which generally become stiffer at higher

pressures.

4.2 Solution by the method of characteristics

{detailed mathematics} Riemann observed that the

characteristic directions defined as dx
dt ¼ k� ¼ U � c play

an important role in hyperbolic systems of equations, for

which the eigenvalues are real. Along these directions the

total derivative with respect to time can be written

d

dt
¼ o

ot
þ dx

dt

o

ot
¼ o

ot
þ ðU � cÞo

ot

Substituting into the conservation equations

dP

dt
� ðU � cÞPx þ UPx þ qc2Ux ¼ �

UAx

AP

dU

dt
� ðU � cÞUx þ

1

q
Px þ UUx ¼ 0

Dividing the first equation by qc and adding and

subtracting it from the second equation, we obtain the

ordinary differential equations along the characteristics

dU

dt
� 1

qc

dP

dt
¼ �UcAx

A

Finally, we can write these equations very simply in terms

of the Riemann variables R±

dR�
dt
¼ �UcAx

A
where R� � U �

Z
dP

qc

This remarkable result says that along the characteristic

directions, we can solve for the Riemann variables by

solving a simple ordinary differential equation in time.

For the purposes of describing the physical meaning of

this rather subtle mathematical result, let us consider the

simple case of a uniform vessel. For this case, Ax = 0 and

so the Riemann variables are constant along the charac-

teristic directions.3 If there is no velocity in the vessel, then

the Riemann variables are constant along lines that prop-

agate upstream and downstream with speed ±c. This

justifies our identification of c with the wave speed. If there

is a velocity in the vessel, the waves propagate downstream

with velocity U ? c and upstream with velocity U - c.

That is, the waves are convected with the flowing fluid, just

as ripples caused by throwing a stone in a river get carried

along with the river. If U \ c, then one of the waves travels

downstream and the other upstream. If U [ c, then both of

the waves propagate downstream and there is no way that

changes produced in the vessel at any point can have an

effect on the flow upstream. This is what happens in

supersonic (or supercritical) flows and explains why sub-

sonic and supersonic flows behave so differently. The

convective velocity of blood in the arteries seldom, if ever,

exceeds the wave speed and so we will consider only

subcritical flows.

If we are interested in what is happening at a particular

location x at a particular time t, we simply have to find the

waves that intersect at (x, t), determine the value of the

Riemann variables R± and then solve for P and U using the

above expression for R±. Conceptually this is very easy,

but in practice it is not so simple. First of all, the path of the

wave depends upon the local velocity and the local velocity

depends upon the waves arriving there from upstream and

downstream. Secondly, the expression for the wave speed

depends on the pressure and so we have to solve integral

equations to find P and U from the values of R±. Making

the assumption, discussed above, that c is constant, P and U

at (x,t) are simply

P ¼ qc

2
ðRþ � R�Þ

U ¼ 1

2
ðRþ þ R�Þ

where R± are the values of the Riemann variables associ-

ated with the forward and backward characteristics that

intersect at (x, t). Generally, the Riemann variables are

given by the boundary conditions that are applied at the

inlet and outlet of the vessel. In more complicated cir-

cumstances, changes can be imposed upon the vessel, for

example, by applying external compression to it at some

particular point. In these cases, the Riemann variables are

also determined by the conditions imposed everywhere

along the vessel, not just at its boundaries.

{non-mathematical summary} Any perturbations

introduced into an artery will propagate as a wave with the

speed U ? c in the forward direction and speed U - c in

the backward direction. U is the velocity of the blood and c

is the wave speed which depends on the elastic properties

of the artery.

5 Wave intensity

With this rather extensive background, we are finally in a

position to describe the origin of wave intensity. In prac-

tice, we generally make measurements over time at a

particular point in the artery. Given that we only know P(t)

and U(t) at that particular point x, what can we learn about3 In this case, they are generally referred to as Riemann invariants.
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the waves there? Since the arterial system is very complex

and we generally do not know how the properties, or even

the anatomy, of the arteries varies upstream and down-

stream of the measurement site, we are obviously limited in

how we can apply the general solution that we have just

derived.

{detailed mathematics} From the definition of the

Riemann variables, we can write the differences

dR� ¼ dU � dP

qc

where dP and dU are the differences in the measured P and

U during the interval dt, which can be conveniently taken

as the sampling interval. Solving these two equations for

dP and dU

dP ¼ qc

2
ðdRþ � dR�Þ

dU ¼ 1

2
ðdRþ þ dR�Þ

The wave intensity dI is defined simply as the product of

the measured dP and dU

dIðtÞ � dPðtÞdUðtÞ ¼ qc

4
ðdR2

þ � dR2
�Þ

It has the useful property that forward waves make a

strictly positive contribution to the wave intensity while

backward waves make a strictly negative contribution.

Thus, if the instantaneous wave intensity is positive it

means that the forward waves are bigger than the backward

waves at that time, and vice versa. Furthermore, this can be

determined solely from measurements made at a single

site, although it does require the simultaneous measure-

ment of P and U. This simple observation was the genesis

of wave intensity analysis.

5.1 The water hammer equations

{detailed mathematics} An important relationship

between the change of P and U across a wavefront, the so-

called ‘water hammer’ equations, follows easily from the

method of characteristics. The differences dP and dU going

from one forward characteristic to another depend upon the

imposed conditions. dP can be positive (compression) or

negative (decompression) and, similarly, dU can be posi-

tive (acceleration) or negative (deceleration). However, the

Riemann variable on the backward characteristic that

intersects the two forward characteristics must be pre-

served. That is, for a forward wave

dR� ¼ 0 ¼ dUþ �
dPþ
qc

Similarly, for differences between the Riemann variables in

a backward wave

dRþ ¼ 0 ¼ dU� þ
dP�
qc

This gives us the water hammer equations,

dP� ¼ �qcdU�

very simple, but important and useful relationships for

arterial waves.

It should be emphasised that P and U are not indepen-

dent of each other in arterial waves; they are inextricably

linked. The theory tells us that any change in P must be

accompanied by a change in U. All waves rely upon the

exchange of energy from one form to another as the wave

propagates. In arterial waves this exchange is between P,

the potential energy stored in the elastic walls, and U, the

kinetic energy in the moving blood. The difference

between the waveforms measured for P and U that often

gives rise to the assumption that P and U are independent

is, in fact, the result of simultaneous forward and backward

waves which, according to the water hammer equations,

have a different relationship to each other.

{non-mathematical summary} There is a simple

relationship between changes in pressure and velocity in

any wavefront given by the water hammer equations

dPþ ¼ qcdUþ for forward wavefronts

dP� ¼ �qcdU� for backward wavefronts

The wave intensity is defined as the product of the

change in pressure times the change in velocity during a

small interval. It is positive for forward waves and negative

for backward waves. Therefore, the net wave intensity

reveals immediately whether forward or backward waves

are dominant and how big they are at any particular time

during the cardiac cycle. The relationships for forward and

backward waves are indicated in the table.

dP dU dI

Forward [0 compression [0 acceleration [0 positive

\0 decompression \0 deceleration

Backward [0 compression \0 deceleration \0 negative

\0 decompression [0 acceleration

Wave intensity has the dimensions of power/unit area

and SI units W/m2. It is essentially the flux of energy per

unit area carried by the wave as it propagates. This

dimensional interpretation of wave intensity contributes

some meaning to it, but its usefulness relies most heavily

on its ability to ‘measure’ the importance of forward and

backward waves at every time during the cardiac cycle.

A problem with this definition of wave intensity is that

its value depends upon the sampling time. Doubling the

180 Med Biol Eng Comput (2009) 47:175–188
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sampling time will double the value of dP and dU

increasing the magnitude of dI. This problem can be

eliminated by using the alternative definition [10]

dI0 ¼ dP

dt

dU

dt

Wave energy. In wave intensity analysis, the time of

arrival and the magnitude of a wave are given by the start

and the magnitude of the peak when dI is plotted as a

function of t. Sometimes, however, it has proved useful to

characterise a wave by the integral of the peak, I ¼R tend

tstart
dIdt; since weaker but longer duration waves can be

equally important as stronger but shorter waves. I is

generally called the wave energy and has units J/m2. It

should be remembered that this quantity is associated with

the energy flux carried by the wave and is generally much

less than the total kinetic and potential energy associated

with the wave.

Another important property of wave intensity that has

proved valuable clinically is that it is calculated in the time

domain. With this interpretation of waves, it is very easy to

determine when waves are present at the measurement site,

their time of arrival and their magnitude. In methods based

on Fourier techniques, the results are given in the fre-

quency domain and it is frequently very difficult to

determine wave arrival times with this approach. Wave-

trains do not ‘arrive’ they are always there.

An example of wave intensity analysis applied to mea-

surements made in the human ascending aorta is shown in

Fig. 3 [12]. The instantaneous pressure, P, and velocity, U,

are shown as the top two curves and the net wave intensity,

dI, calculated from them is shown as the bottom curve.

Positive values of dI correspond to dominant forward

waves and negative values to dominant backward waves.

The first peak of dI corresponds to the initial compression

(or acceleration) wavefront caused by the contraction of the

left ventricle. In mid-systole there is a negative peak

indicating a dominant reflection of the initial contraction

wavefront. This is followed by a second positive peak

indicating a dominant forward wavefront at the end of

systole. Because P and U are both falling at the time of the

second positive peak, it is clear that this represents a

decompression (or deceleration) wave generated by the

relaxation of the left ventricle.

6 Separation of forward and backward waves

6.1 Wave separation

{detailed mathematics} Up to this point, the analysis has

been very general, admitting a number of nonlinearities

into the analysis; the nonlinearities due to the convective

term and the wave speed being a function of the pressure.

In spite of this, we can still show that the wave intensity

calculated from the measured P and U is the net intensity

due to the forward (positive definite) and backward (neg-

ative definite) waves. If we now make the partially

linearising assumption that the forward and backward

waves are additive when they intersect, it is possible to

extract even more information from the measurements.

The assumption of additivity is not generally true for

nonlinear waves; solitons, for example, do not interact

additively when they meet. The solution given by the

method of characteristics allows for the separation of

waves without making any linearising assumption [15].

However, the method involves the implicit solution of

integral relationships, making it far from trivial to imple-

ment, and the authors conclude that it generally makes only

a small difference compared to the linearised theory. We

will therefore restrict ourselves to the linearised method of

separation which is relatively easy in theory and in prac-

tice. Furthermore, since we can always make the amplitude

of the wavefronts as small as desired by increasing the

sampling frequency, we can make the linear separation

more accurate by increasing the sampling rate. We also

note that with these linearising assumptions, the following

separation of forward and backward waves is formally

identical to the method using Fourier analysis introduced

by Westerhof et al. [22].

If we define dP± and dU± as the changes in pressure and

velocity in the forward ‘?’ and backward ‘-’ waves,

additivity requires

Fig. 3 Our first measurement of wave intensity in man. Instantaneous

pressure P and velocity U are plotted as the top two curves, and net

wave intensity dI is the bottom curve. The dotted lines represent the

peak of the R-wave of the ECG. The heart rate at the time of

measurement was approximately 74 beats per min. The velocity

measurements were made with a catheter based EM-flow meter with a

low signal to noise ratio by the standards of more modern in vivo

methods. Despite this, the wave intensity calculated beat-by-beat

shows consistent patterns which, during the course of the full

measurements, varied regularly with the respiratory cycle deduced

from the changes in the measured systolic pressure (approximately

one respiratory cycle is shown in the figure)
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dP ¼ dPþ þ dP� and dU ¼ dUþ þ dU�

These equations, together with the waterhammer equations

for the forward and backward waves

dP� ¼ �dU�

can be solved for changes in the forward and backward

waves

dP� ¼
1

2
ðdP� qcdUÞ

or, equivalently,

dU� ¼
1

2
dU � dP

qc

� �

The forward and backward wave intensity for the separated

waves is

dI� � dP�dU� ¼
�1

4qc
dP� qcdUð Þ2

It may not be immediately obvious, but a bit of simple

algebra shows that the forward and backward wave

intensity sum to the measured wave intensity

dI ¼ dIþ þ dI�

which is convenient analytically.

The pressure and velocity waveforms for the forward

and backward waves can be found by summing these

wavefronts determined from the measured P and U

P�ðtÞ ¼
Xt

0

dP�ðtÞ þ P0 and

U�ðtÞ ¼
Xt

0

dU�ðtÞ þ U0

where P0 and U0 are pressure and velocity at t = 0,

effectively integration constants. This linearised form of

separation of the waves into forward and backward com-

ponents is formally identical to the Fourier method first

proposed by Westerhof and his co-workers [22] and it

produces essentially identical results [refer to paper in this

issue by van den Wijngaard et al.].

{non-mathematical summary} If the local wave speed

is known, it is possible to use simultaneously measure-

ments of pressure and velocity to determine the magnitude

and type of waves arriving at the measurement site at any

given time. This is particularly important if the timing of

wave arrival is important since a large forward wave can

mask the arrival of a smaller backward wave so that the net

wave intensity is positive. Forward waves in the arteries are

largely caused by the heart and backward waves are the

result of reflections. Because the reflected waves can be re-

reflected as forward waves (and vice versa), this is not

entirely true. In some cases, particularly the coronary

arteries, there are backward waves generated at distal sites

that are not due to reflections.

An example of the separation of the waveforms into

their forward and backward components is shown on the

left in Fig. 4. For ease of comparison, the diastolic pressure

is subtracted from the measured pressure.

The importance of the separation of waves is evident

when, as often happens, the forward and backward waves

are of similar magnitude so that the net wave intensity

is small even though the waves can be big. It is parti-

cularly important when determining the arrival time of

waves when there are both forward and backward waves

present.

7 The reservoir-wave hypothesis

Figure 4 illustrates one of the problems with the separation

of the arterial pressure and velocity into their forward and

backward components using either impedance or wave

intensity analysis. During systole the separation seems to

be reasonable with an initial forward compression wave

produced by left ventricular contraction followed by

backward, reflected waves. During diastole, however, the

prediction is invariably that there are large, simultaneous

forward and backward waves whose pressures add to give

the exponential fall-off of pressure that is regularly seen

during diastole accompanied by large velocities that cancel

each other out to give the low diastolic flow velocities that

are also observed. This is the only way that the wave theory

can explain a falling pressure and a zero velocity.

This problem gave rise to the reservoir-wave hypothesis

that the pressure in the arteries is made of two components:

a reservoir pressure produced by the expansion of the

elastic arteries during systole followed by their contraction

during diastole (the Windkessel effect) and a wave pressure

that drives the arterial waves. Using this hypothesis, the

anomalous behaviour of the separated waves during dias-

tole does not occur since the reservoir pressure arising from

the Windkessel effect describes the pressure fall-off during

diastole very well so that there is little or no wave pressure

which is consistent with the little or no velocity that

is observed. The right side of Fig. 4 shows the differ-

ence between the separated waves calculated without the

reservoir pressure and after separating out the reservoir

pressure.

The reservoir-wave hypothesis has been applied to

arterial system [20] and the venous system [21] with

interesting and far-reaching results. It is the subject of

another paper in this issue which presents the experimental

evidence for it [18]. This approach seems very promising

and may be very useful in understanding arterial mechanics

more fully.
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The rate of propagation of the waves through the arterial

system is indicated in Fig. 5. The figure shows the pressure

measured every 10 cm down the aorta in man. On the left,

the data are plotted in the traditional way as P(t) at dif-

ferent x. On the right, the same data are plotted as P(x) at

different t, every 20 ms; the solid lines represent the period

of rising pressure 100 \ t \ 360 ms and the dotted lines

the period of falling pressure t [ 360 ms. The initial

compression wave (indicated by the solid arrows) can be

seen propagating down the aorta, starting at t = 100 ms
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Fig. 4 The separation of measured P and U waveforms into their

forward and backward components. The data were measured in the

human descending aorta and are shown in black. The forward

waveforms are shown in blue and the backward in red. On the left the

separation is performed on the measured signal; the forward and

backward waveforms add to give the measured waveforms. On the

right the reservoir contribution to the waveforms (shown in green) is

calculated and subtracted from the measured waveforms to give the

total wave contribution to the measured waveforms. The separation is

then carried out on the wave P and U. In this case the reservoir,

forward and backward waves sum to give the measured waveforms.

For ease of comparison, the diastolic pressure is subtracted from the

measured pressure
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Fig. 5 Aortic pressure measured 10, 20, 30 , 40, 50 and 60 cm

downstream from the aortic valve plotted on the left as a function of

time at different distances and on the right as a function of distance at

different times. The solid lines indicate 20 ms intervals from 100 to

360 ms (the period of ascending pressure) and the dotted lines

indicate 20 ms intervals from 360 ms to the end of diastole. The

arrows indicate the progression of the initial compression wave

distally during early systole. The diastolic pressure has been

subtracted from the measured pressure to emphasise the increasing

pulse pressure with distance along the aorta
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and ending before t = 200 ms. Similarly, the rapid fall in

pressure shortly after peak pressure is attained can also be

seen to propagate down the aorta. Apart from these two

periods, the pressure is remarkably uniform all along the

aorta. This is particularly true during diastole, where the

falling pressure is very uniformly distributed along the

aorta.

8 Reflection and transmission of waves

So far, the theory has been confined to the propagation of

waves in a single tube. The arterial system is a very

complex network of arteries and it is therefore necessary to

consider what happens to the waves as the anatomy or the

properties of the arteries change from place to place.

Briefly, when a wave encounters a discontinuity of condi-

tions; a change of area, a bifurcation, or simply a change in

the local wave speed; reflected and transmitted waves are

generated that satisfy the boundary conditions at the

discontinuity.

The effect of a bifurcation can be described by a

reflection coefficient C ¼ dP
DP where dP is the magnitude of

the pressure change due to the reflected wave and DP is the

pressure change due to the incident wave. An expression

for C can be found by requiring

1. the net volume flux into the bifurcation is equal to the

net volume flux out and (conservation of mass)

2. the total pressure PT ¼ Pþ 1
2
qU2 is constant across the

bifurcation (conservation of energy).

The results depend upon the areas and wave speeds of

the different vessels. The value of C assuming that c *A1/4

is shown as a function of the daughter-parent area ratio

a ¼ A1þA2

A0
for different values of the asymmetry ratio c ¼ A2

A1

where A0, A1 and A2 are the areas of the parent, major and

minor daughter vessels.

We see from Fig. 6 that the C = 1 for a closed tube,

a = 0, and that C ? -1 for an open tube, a ??. We also

see that there is no reflection, C = 0 for symmetrical

bifurcations if a � 1:15; This is generally referred to as the

well-matched condition. Interestingly, extensive measure-

ments of area ratios of human arterial bifurcations found a

mean value a = 1.14 ± 0.03 [11]. Looking only at the

coronary circulation, they found a mean value a = 1.18 ±

0.04. The correspondence between the measured area ratios

of arterial bifurcations and the well-matched condition

could be a coincidence, but it could also be taken as evi-

dence that the arteries are designed to be well-matched for

waves generated by the heart.

If arterial bifurcations are well-matched for forward

wavefronts, they are necessarily poorly matched for

backward wavefronts in one of the daughter vessels. This

observation has very important implications in arterial

mechanics and leads to a phenomenon that is described as

wave trapping.

Very briefly, The waves generated by the ventricles

propagate forward through the well-matched bifurcations

to the periphery where they are reflected by the mismatch

in impedance in the small arteries and arterioles. These

backward reflected waves must traverse the same bifurca-

tions to return to the heart but, because the bifurcations are

poorly matched for backward waves, they suffer significant

reflections en route. The reflections that occur at the poorly

matched bifurcations are forward waves that again travel to

the periphery without loss where they too are reflected.

These re-reflected backward waves again suffer reflections

and so on ad infinitum. This mechanism, arising from the

asymmetry in the reflection of forward and backward

waves at arterial bifurcations, is very important in under-

standing arterial haemodynamics.

The wave trapping phenomenon can explain the appar-

ently puzzling results of many of the experiments

performed in the arterial system in an effort to elucidate the

nature of wave reflections. To cite just two; Peterson and

Shephard created a large pressure wave in the femoral

artery by the rapid injection of blood and failed to measure

any detectable effect in the ascending aorta [13]. Westerhof

et al. completely occluded the aorta just proximal to the

aorto-iliac bifurcation and measured pressure and flow in

the ascending aorta of dogs and found that the effects of the

occlusion were so small that they were not tabulated [19].

In the introduction to his chapter on wave reflections,

McDonald cites a remark by Wormersley, ‘If you wanted to

design a perfect sound-absorber you could hardly do better

than a set of tapering and branching tubes with
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Fig. 6 The reflection coefficient for a bifurcation as a function of a
the ratio of daughter to parent areas for different symmetry ratios

c � c = 0 corresponds to a straight tube with no bifurcation and c = 1

corresponds to a symmetrical bifurcation
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considerable internal damping such as the arterial tree’ [7]

(Chap. 12).

9 Determination of wave speed

The local wave speed in arteries is notoriously difficult to

measure. In arteries, the wave speed is known to vary from

artery to artery and from place to place in the aorta.

Methods for the determination of wave speed rely either on

measurements of the transit time of a wave from one site to

another or upon the calculation of the wave speed from

measurements of the elastic properties and the dimensions

of the artery wall. Transit time measurements can give only

average values over the distance between the two sites of

measurement. Calculation of the wave speed from elastic

property generally involves invasive measurements of wall

properties that are difficult or impossible in the clinic.

Because net wave intensity does not involve knowledge

of the wave speed, but only the simultaneous measurement

of P and U, it is a very robust and reliable measure of net

wave properties. It should be used preferentially whenever

possible. However, there are cases when the properties of

the separated waves are important and these turn out to be

very sensitive to the wave speed that is used. Also, since

the local wave speed is inversely related to the local dis-

tensibility of the artery, it is also a clinically meaningful

property in its own right. For these reason, a lot of effort

has been expended on ways to determine the local wave

speed, ideally from the measurements of P and U.

Two approaches have been developed for determining

the wave speed from simultaneous measurements of P and

U; the PU-loop and the sum-of-squares.

9.1 The PU-loop method

If there are only forward waves in the artery, dP = dP? and

dU = dU? which means, using the water hammer equa-

tions, that dP = qcdU. Thus a plot of P versus U should be

linear during any period when there are only forward

waves present, and that the slope of the line should equal

qc. In the systemic and pulmonary arteries, we expect that

there should be a period right at the start of systole, after

the initial contraction wave has passed but before any

reflections can get back to the measurement site, when

there are only forward waves. Plots from clinical mea-

surements show that this is true and this provides our most

secure way of determining the local wave speed.

Practically, there are problems with this determination

of wave speed. Temporal delays between the pressure and

velocity measurements have large and unpredictable

effects on the slope of the PU-curve during early systole.

Since the methods of measuring pressure and velocity are

very different, there is a high probability that there will be

some time lag introduced into the two measurements and it

is essential to calibrate very accurately the measurement

systems not only for magnitude but also for the temporal

response to obtain consistent, reliable values for c. This is

shown in Fig. 7 where shifts of 5 ms between P and U have

a very large effect on the ‘linear’ portion of the PU-loop.

Experience with well calibrated sensors has confirmed

that there is a period in systemic and pulmonary arteries,

often shorter than we expected, when the PU-loop is linear,

confirming that there are only forward waves in very early

systole. Incidentally, this is also consistent with our general

observation that wave intensity goes to zero during the later

parts of diastole in most cases. In practice, we find that we

can often use the linearity between P and U during early

systole to infer the relative lags in the measurement sys-

tems. This is done by shifting one signal relative to the

other until the ‘most linear’ relationship is attained.

9.2 The sum of squares method

In some circumstances, particularly in the coronary arter-

ies, it is not possible to be sure a priori that there are

periods during the cardiac cycle when there are only for-

ward waves present in the artery. For these cases we have
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Fig. 7 An example of the determination of the wave speed using the

PU-loop method. The left figure shows the measured P plotted against

U for a single cardiac cycle. The data are the same as those shown in

Fig. 4. The loop is traversed in the counter clockwise direction in

time. The linear portion of the curve, corresponding to the early part

of systole, indicates that there are only forward waves present during

that period of the cardiac cycle and by the water hammer equation the

slope is qc, giving a measure of the wave speed since the density of

blood is known. The dotted lines indicate the sensitivity of the PU-

loop to shifts in measurements of P and U. They indicate the effect of

5 ms shifts of U relative to P. The same data after the subtraction of

the reservoir pressure is shown on the right of the figure. The slopes

of the linear portions of the two loops are nearly identical. The wave

pressure obtained after the separation of the reservoir pressure is

much smaller in the descending aorta and relatively small reflected

wave seen in Fig. 4 means that the loop is much closer to the linear
line predicted when only forward waves are present
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devised another algorithm. It is based on the observation,

for both clinical and benchtop measurements, that the use

of an incorrect wave speed, either too small or too big,

usually results in the calculation of self-cancelling forward

and backward wave intensity. Remember that the sum of

the separate wave intensities must equal the net wave

intensity which depends only on the measured P and U,

independent of the wave wave speed. This suggests that

minimising the magnitude of the separated wave intensities

might give a way to determine the wave speed. Mathe-

matically this involves the minimisation of the sum of the

absolute values of the separated wave intensities as a

function of c. Defining

W ¼
X
jdIþðtÞj þ

X
jdI�ðtÞj ¼

1

2

X dP2

qc
þ qcdU2

� �

where the sum is taken over the cardiac cycle. Minimising

with respect to c, we obtain

qc ¼
P

dP2

P
dU2

� �1=2

which provides a second way to calculate c. Further

analysis shows that this is only strictly true when the

forward and backward velocities are not correlated, i.e.
X

dUþdU�:

A recent paper has demonstrated that the sum of squares

method for calculating wave speed gives non-physiological

results when applied to measurements made in the coronary

arteries before and after interventional therapy [5]. The

reasons for this may be the presence of large reflection sites

close to the measurement site in the relatively short

coronary arteries or the neglect of the reservoir pressure

in the calculations. Because of the importance of the wave

speed in the separation of forward and backward waves,

which is particularly important in the coronary arteries, it is

important to resolve these difficulties if wave intensity

analysis is to contribute to our understanding of coronary

artery dynamics [17].

{non-mathematical summary} The relationship

between changes in pressure and velocity in an arterial

wave enable us to calculate the local wave speed during

periods when there are only forward waves present, e.g.

during very early diastole before the initial compression

wave has had time to be reflected. This period can be

determined from the slope of the linear segment of a plot of

the PU-loop during early systole.

c ¼ 1

q
ðslope of the PU-curveÞ

If the PU-loop does not display a linear segment during

early systole, as is the case in the coronary arteries, the

wave speed can be determined alternatively from the sum

of the square of the pressure change and the sum of the

square of the velocity change over one cardiac period.

c ¼ 1

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
dP2

P
dU2

s

:

Both methods for determining wave speed work well in

in vitro experiments but they should be used with caution

in vivo where the validity of the underlying assumptions

about the uniformity of the vessel and the nature of the

reflected waves is largely unknown.

10 The advantages and disadvantages of wave intensity

analysis

Wave intensity analysis relies upon the simultaneous

measurement of pressure and velocity, which is not trivial.

In principle, it is very easy to calculate the wave intensity,

particularly for digitally acquired data where dP and dU

can be thought of as the difference between P and U over

one sampling time. In practice, taking simple differences is

very sensitive to noise in the measurements. Since wave

intensity is the product of two differences, it is doubly

sensitive to noise. For this reason, it is almost always

necessary to filter the experimental measurements in some

way before taking the differences, which means that the

results can be sensitive to the nature of the filtering that is

used.

A significant advance in the practical realisation of wave

intensity analysis came with the use of Savitzky–Golay

filters [14]. These filters were developed to smooth spec-

trographic data where it is important to preserve peaks in

the data while smoothing. In brief, the filter fits a polyno-

mial of chosen order to a chosen number of points about

the centre point using least squares. The smoothing filter

then returns the value of the fitted polynomial. Knowing

the fitted polynomial, however, means that any derivative

of the fitted polynomial can also be returned as the filter

output. In particular, the filter coefficients can be deter-

mined so that the value returned by the filter is the first

derivative of the fitted polynomial. This means that a filter

can be implemented that calculates the first derivative of

the best fit polynomial through the local data, differenti-

ating and smoothing the data in a single operation. With

this filter, it is relatively easy to calculate the net wave

intensity in real time as the pressure and velocity data are

being recorded.

Since wave intensity analysis is done in the time domain

rather than the frequency domain, it is easy to relate

the features of the analysis to the temporal changes in

the measured pressure and velocity. It is very easy, for
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example to relate shoulders and points of inflection on the

measured pressure waveform to the arrival times of waves

calculated using wave intensity analysis. This is not true

for methods based on Fourier analysis. It is usually difficult

to predict features of the measured waveform from the

collection of waves determined by the Fourier decompo-

sition. For example, cover the measured waveform at the

top of the left hand side of Fig. 1 and try to work out the

time at which the rapid rise of pressure at the beginning of

systole begins by looking at the sinusoidal waves that sum

to give the measured pressure. Using the successive

wavefront representation shown to the right of the figure,

the timing of the foot of the wave is very easily determined.

The net wave intensity, preferably calculated using the

derivative rather than the difference to eliminate scale

differences due to sampling rate, is a remarkably robust

measure of net wave energy. It is based on sound

mechanical principles, the conservation of mass and

momentum, and can be calculated from measured data very

easily. It is rather sensitive to any relative delay between

the P and U measurements and it is important that the

measurements are well calibrated not only in magnitude

but in time. The magnitude and pattern of net wave

intensity is potentially useful clinically and there have been

some applications of it to clinical data [10].

The use of wave intensity analysis to separate forward

and backward waves can provide much information about

arterial mechanics, particularly when there are large

reflections. Unlike the net wave intensity, the separation

depends upon an accurate estimate of the wave speed

which is not always easy to obtain. For this reason, sepa-

rated wave analysis is now more of a research tool than a

method that can be used clinically. Of course, if the results

of the research prove to be useful, it could undoubtedly be

developed into a robust clinical method with the appro-

priate effort.

11 Conclusions

Wave intensity analysis provides and alternative approach

for the study of pressure and flow in the cardiovascular

system. It is carried out in the time domain and so it is easy

to relate the results of the analysis to particular times in the

cardiac cycle. It is based on sound mechanical principles,

the conservation of mass and momentum, and involves the

general solution of the basic equations using the method of

characteristics. Despite the complexity of the mathematical

methods, the results are surprisingly simple to apply.

Wave intensity has the convenient property that it is

positive for forward and negative for backward travelling

waves, enabling rapid determination of proximal and distal

effects on arterial haemodynamics. The theory also

suggests ways of calculating the local wave speed from

simultaneous measurements of pressure and velocity. Since

the wave speed is directly related to the local distensibility

of the vessel, the measurement of wave speed is also a

measurement of the local elastic properties of the artery,

which could be of clinical importance.

Once the wave speed is known, wave intensity analysis

provides a simple way to separate the forward and back-

ward components of the waves that make up the measured

pressure and velocity waveforms. This provides further

quantitative and temporal information about proximal and

distal effects that provide much information about cardio-

vascular mechanics.

A recent development, arising from wave intensity

analysis of measured data but with much wider implica-

tions, is the reservoir-wave hypothesis that it is informative

to consider the pressure waveform in the arterial (and

venous) system as the sum of a reservoir pressure arising

from the capacitive effect of all of the elastic vessels and a

wave pressure that is responsible for the waves that tra-

verse the vascular system. This ad hoc hypothesis has only

been validated in the aorta and venae cavae but it provides

a resolution to several long-standing conundrums about

arterial mechanics and deserves further consideration. The

hypothesis, if valid, could have important implications in

the study of coronary arterial mechanics where the sepa-

ration of measured pressure and flow waveforms is

particularly important. It also raises the clinically inter-

esting possibility of measuring the reservoir pressure, a

global property seen by the heart, from easily accessible

peripheral arterial sites [1].

Finally, it is my belief that wave intensity and Fourier

based analysis provide us with two alternative ways of

looking at pressure and flow in the arteries. Neither is right

(or wrong) and both are approximations to reality. They are

based on profoundly different representations of waves,

both of which are well-founded mathematically. Both

methods of analysis have their advantages (and disadvan-

tages) and ultimately the choice between them is one of

convenience and utility.
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