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The polyelectrolyte layer coating mammalian cells, known as the glycocalyx, may be
important in communicating ow information to the cell. In this paper, the layer is
modelled as a semi-in�nite, doubly periodic array of parallel charged cylinders. The
electric potential and ion distributions surrounding such an array are found using the
linearised Poisson-Boltzmann equation and an iterative domain decomposition technique.
Similar methods are used to calculate Stokes ows, driven either by a shear at in�nity or
by an electric �eld, parallel or transverse to the cylinders. The resulting electric streaming
currents due to ow over endothelial cells, and the electrophoretic mobilities of red blood
cells are deduced as functions of polymer concentration and electrolyte molarity. It is
shown that only the top portion of the layer is important in these e�ects.

Introduction

The plasma membranes of erythrocytes and endothelial cells are covered with a layer
of membrane-bound glycoproteins and plasma proteins, known as the glycocalyx. The
glycocalyx is highly charged and its interactions with moving electrolyte generate vari-
ous electrokinetic e�ects. For example, the ow of blood across the endothelial surface
generates streaming currents and potentials. Arguing by analogy with electrokinetic
phenomena in connective tissues such as cartilage and bone, it has been suggested that
these may be important in transducing information about blood ow to the underlying
tissue. As another example, electrical interactions between blood cells are important to
many aspects of haemorheology. The mobility of red cells in an electric �eld has also
been extensively investigated, both as a means of probing the structure of the glycocalyx
and as an indicator of haemorheological abnormalities.
A number of structurally based theoretical models of the electrokinetic phenomena

generated by ow through extracellular matrix have been developed (e.g. Buschmann
& Grodzinsky 1995, Chammas et al. 1994 Eisenberg & Grodzinsky 1988). The e�ects
of ow over polylelectrolyte layers has received less attention (Weinbaum 1998). The
majority of investigators have used a continuum approach which has made it di�cult
to relate the predictions to the molecular structure and organisation of the glycocalyx.
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In order to overcome this di�culty we have recently developed a model in which the
glycoproteins are represented as an array of charged rods (Mokady, Mestel & Winlove
(1998), henceforth referred to as MMW). We used the approach of Larson and Higdon
(1986 & 1987) to calculate ow at di�erent depths in the array resulting from a shear
ow across the surface or from an imposed electric �eld. Ion distributions were calcu-
lated using a geometrically consistent version of Katchalsky's (1971) rod-in-cell model
of polyelectrolytes. The resulting streaming currents and potentials were calculated for
a number of representative situations.

The aims of the present work are to summarise the physiologically relevant conclusions
and to compare the theoretical predictions with published data on red cell electrophoresis
and streaming potentials in blood vessels. In addition, we determined the sensitivity of
the theory to choice of parameters and experimental conditions. We also point out certain
predictions of the theory which have implications for the design of future experiments.

A preliminary report on this work was given at the 2nd International Conference on
Multiphase Flow, Kyoto, 1995, while details of the computational method are given in
(MMW).

Theoretical Model

Electrical Potential and Ion Distributions

Since the model has been described in detail elsewhere (MMW), we shall only outline its
physical basis and summarise the principal results in the following section. Except where
explicitly stated, all variables are in SI units. The glycoproteins of the glycocalyx are
modelled as cylindrical rods of radius a with a uniform surface charge density arranged
in a square array (Figure 1).

The potential �eld, �, around each cylinder satis�es the Poisson equation:

r2� = ��
"

(2:1)

where " is the constant permittivity of the solution. Each of the I distinct ion species is
assumed to satisfy a Boltzmann distribution, so that the charge density, � is given by:
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where �e is the charge of an electron, k is Boltzmann's constant, T is the absolute
temperature, while n0i is the concentration in�nitely far from the rods and zi the valency
of ion type i. For small potentials (� � e�=kT � 1) equations (2.1) and (2.2) may be
linearised. Electrical neutrality far from the glycocalyx requires
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On the cylinders, the boundary condition

@�

@r
= q on r = a (2:5)

is imposed, corresponding to a charge density per unit axial length �2�a"q C=m.
For an isolated cylinder, (2.3) with (2.5) has the solution
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where Kn and below, In, denote modi�ed Bessel functions of order n. The 0 denotes
di�erentiation with respect to the argument, and K 0

0 < 0. Note that the solution (2.6) is
equivalent to the potential of mobile ions around a line charge of strength �0 at r = 0,
where
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: (2:7)

Consider �rst a doubly periodic array of cylinders with separation 2b, so that the potential
is the same within each square domain. Then within each square � is determined by (2.4)
with (2.5) and the symmetry conditions
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= 0 on jxj = b and
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= 0 on jyj = b : (2:8)

A simple approximation to the potential can be obtained by replacing each charged
cylinder with a line charge of strength (2.7) at its centre. This gives the result
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where i and j are unit vectors in the x and y-directions respectively. This approximation
is easy to use in a variety of con�gurations and deserves wider application.
An alternative \cylindrical cell" approximation was proposed by Katchalsky (1971),

in which the outer boundary of each square cell is replaced by a cylindrical boundary of
radius b0 = 2b=

p
� chosen so that the solid volume fraction is the same as in the true

geometry. Imposing the condition �0(b0) = 0 gives
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The exact solution to (2.3), (2.5) and (2.8) can be expressed as a Fourier series.
Imposing only the boundary condition (2.5),
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The unknown coe�cients an are determined by the boundary conditions (2.8). Truncating
the in�nite series after N terms, and applying (2.8) atM sampled points on the boundary,
where M > N , results in an over-determined system of linear algebraic equations for the
coe�cients. Due to the eightfold symmetry an 6= 0 only if n = 4m and only points in
0 < � < 1

4� need to be sampled. Numerical solutions were found using the LAPACK
linear least-squares solver \dgels".
We showed in (MMW) that for a charge density which varies periodically along the

cylinder axis:

q = q0 + q1 cos�z (2:12)
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the potential may be written as a sum of two components:

� = �0(r; �) + �1(r; �) cos�z (2:13)

where �1 satis�es (2.3) with � replaced by an e�ective Debye length � given by �2 =
�2+�2. The exponential decay rate of �1 is therefore greater than that of �0, so that at
fairly short distances from the cylinder the potential � is dominated by the z-independent
component. Any experimentally measurable properties, such as osmotic pressure, which
depend on the potential at some distance from the molecule, will thus depend only on �0,
and will not be a�ected by the microscopic variation along the molecule. This argument
can be generalised to any periodic charge distribution and therefore helps to justify the
use of a uniformly-charged cylinder as a model for a molecule consisting of point charges.
In MMW, the glycocalyx was modelled as a semi-in�nite array, so that there were no

cylinders in x > 0. The potential then varied between successive square domains, and
the boundary conditions at x = �b were replaced by continuity requirements. Within
each domain expansions similar to (2.11) were used, but the reduced symmetry requires
more coe�cients an. For x > 0, the potential can be written
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for unknown coe�cients n. The resulting set of equations was solved iteratively, solving
initially for the top layer of cells and using the solution in one layer of cells to determine
approximate boundary conditions for the underlying layer. In each cell, at each iteration,
the unknown coe�cients were found by least squares methods as before. The procedure
allowed the surface charge to vary between layers.

Flow Fields

Because of linearity, ow through the glycocalyx can be regarded as the superposition
of two components, an axial ow parallel to the cylinders and a transverse ow perpen-
dicular to them. Flow across the endothelial cell glycocalyx is driven by the macroscopic
pressure gradient in the vessel but, on the length scale of the glycocalyx, its e�ect can
be represented totally by a shear ow at in�nity. In electrophoresis the ow is driven
by the applied electric �eld. In either case, the electrical force caused by local variation
in the electric potential, �(�)r�, is conservative. It is therefore balanced by a local
pressure gradient and has no e�ect on the velocity to leading order. The uid velocity
does, however, give rise to a streaming current or potential as calculated below.
For axial ow, with no imposed electric �eld or axial pressure gradient, the Stokes

equations for the unidirectional velocity u = (0; 0; u(x; y)) reduce to:

r2u = 0 : (2:15)

For ow driven by a shear of magnitude � above the layer the boundary conditions are:

@u

@x
! � as x!1 and u! 0 as x!�1 ; (2:16)

while no-slip on the cylinders and the periodicity in the y-direction require

u = 0 on ri = a;
@u

@y
= 0 on y = �b : (2:17)

Here (ri; �i) denote polar coordinates centred on the ith cylinder. This problem is solved
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by a domain decomposition method similar to that used in the electrical potential
calculations. The velocity is expanded

u(ri; �i) = �i0 ln ri +
1X
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i � r�ni ) cosn�i : (2:18)

in each square subdomain and
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above the layer. The constants �in and �n are found numerically.
For the transverse ow, the velocity can be represented by a streamfunction 	(x; y),

so that u = (	y ; �	x; 0) and the Stokes equations become:

r2	 = �!; r2! = 0 : (2:20)

The expansions and solution procedure are more lengthy in this case and are given in
MMW.

Calculation of Streaming Current

Flow parallel to the cylinders advects ions giving rise to a current density j(x; y) = �u.
The total streaming current per unit glycocalyx length is given by
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Such axial ow does not disturb the ion distribution. However, similar advection by ow
perpendicular to the cylinders would alter the ion density �, and as discussed in MMW, it
is necessary to include a term due to Brownian motion instantaneously restoring electrical
equilibrium. Even with this term included, the net streaming current is notably smaller
for transverse rather than axial ow, for hydrodynamical reasons.

Calculation of Electrophoretic Mobility

When a �eld (0; 0; E) is applied parallel to the cylinders and cell surface, the uid
velocity satis�es:

�r2u = ��E = �2"E� ; (2:22)

where � is the viscosity. Using (2.3), a particular solution to (2.22) is u = "E�=�, to
which expansions of the form (2.16) and (2.17) must be added. When the �eld is parallel
to the cell surface but perpendicular to the rods, the governing equations become:

r2	 = �!; r2! = �2
"E
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: (2:23)

In each case the potential � is as calculated above. Both equations are solved numerically
in MMW using the methods outlined above.
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Results

Choice of Parameters

Very little is known about the physico-chemical properties of the cell-surface polymers.
Modelling them as uniformly charged cylinders introduces further arbitrariness into the
choice of parameters. For the charge spacing except when speci�ed otherwise, we shall
take 1.6 nm, a value measured for heparan sulphate which is probably representative of
the more highly charged components of the glycocalyx. For the rod radius we shall take
a = 0:5 nm. This value is not inconsistent with structural data and has been shown to give
a good �t between calculations of ion distributions and osmotic pressures calculated using
a cylindrical cell model and a large body of experimental data on glycosaminoglycans
and proteoglycans (e.g. Buschmann & Grodzinsky 1995). The concentration of polymer
in the glycocalyx is not well-characterised. Estimates for endothelial cells suggest a
concentration of 10% v/v, but this is believed to be an upper bound. We therefore present
results for concentrations of 10% and 1% which should encompass the physiological range.
The charge density for a 1% concentration is then 1:3� 106C=m3. The �nal variable is
the electrical permittivity of the solution. Permittivity is a function of salt concentration
and a range of values are employed in molecular dynamics simulations, but in the absence
of any consensus we shall use the value for pure water, " = 6:91� 10�10 C2/(Jm).

Electrostatic E�ects

Results are presented in terms of the non-dimensional potential � = e�=(kT ). Figure 2
shows the e�ects of polymer concentration on the average potential at the outer boundary
of the square domain. This potential is a determinant of many of the colligative properties
of the polymer array. Note that over the concentration range estimated for cell-surface
polymers (1% { 10%) the potential varies approximately 5-fold, though at higher polymer
concentrations the sensitivity is reduced. A 10-fold reduction in ionic strength, as is often
used experimentally to amplify electrokinetic e�ects, increases the potential by up to an
order of magnitude. Unlike the cylindrical-cell model, the rod in square-cell model is
space-�lling, giving rise to a non-cylindrically symmetric potential �eld within the cell,
as shown in Figure 3a. The �gure also demonstrates that the solution for the cylindrical
cell is close to the average value for the square cell.

Given the additional computational complexity of the square-cell model (2.11), it is
pertinent to compare its predictions with the simpler cylindrical-cell (2.10) and line-
charge (2.9) approximations. From Figure 3b it is apparent that over the physiological
range of polymer concentrations both of the simpler models are close to the square-cell
model, the line-charge model being almost indistinguishable. However, the line-charge
approximation is incompatible with the uid-ow coupling which is the thrust of the
present work.

A widely used simpli�cation is the linearisation of the Poisson-Boltzmann equation.
The e�ect of this is shown in Figure 4 where the non-linear Poisson-Boltzmann equation
has been solved for a monovalent electrolyte using a cylindrical cell approximation as
in Winlove & Parker (1987). At a polymer concentration of 10%, the potentials are
indistinguishable at physiological ionic strength, although they di�er signi�cantly at 0.015
M. However, at a polymer concentration of 1%, little di�erence is evident even at the
lower salt concentrations.
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The potential close to the surface of a polymer layer is shown in Figure 5 for two
polymer concentrations at a low molarity both for the exact solution (2.11) with (2.14)
and for the line-charge approximation. The most striking observation is that even under
conditions of minimal shielding, high polymer concentration and low ionic strength
(Figure 5a), the e�ect of the surface is apparent only in the �rst 2-3 layers of rods.
In the solution phase the potential decays exponentially over the Debye length-scale.
The line-charge approximation is very close to the more exact solution at low polymer
concentrations (Figure 5b), but signi�cant di�erences occur when the Debye length is
comparable with the cylinder separation distance as in Figure 5a. In fact, for the unre-
alistically high potential values of Figure 5a, the linearisation of the Poisson-Boltzmann
equation is also dubious.
The distributions of co- and counter-ions are shown in Figure 6 for a 0.15 M saline

solution, for which the Debye length ��1 = 0:76 nm. Physiologically the most pertinent
observation is that the distribution within the glycocalyx is una�ected by the presence of
the boundary except for the outermost layer of rods where the distribution decays on a
scale determined by the Debye length. It should be noted that an additional e�ect of the
glycocalyx is to cause a 2-fold imbalance in the numbers of anions and cations actually in
contact with the plasma membrane, which might be important for the functioning of ion
channels in the membrane. In the solution, the potential decays exponentially and the ion
distribution is undisturbed beyond 3 nm. This demonstrates that electrical interactions
between cells are likely to be important only when the distance of approach of the cells is
less than 6 nm. However, whereas the electric potential decays exponentially outside the
surface layer, hydrodynamic interactions between cells decay algebraically. Thus when
cells are in close proximity, the induced streaming potentials may vary because of changes
in the local shear rate, even when the ion concentrations do not.
One consequence of the asymmetry of the potential in the surface is the generation of

a net force on the uppermost cylinders. We show in MMW that the magnitude of the
electrostatic force per unit glycocalyx length is

Fi = "q2a��i1 (3:1)

where

�im = aim

�
Im(�a)

I0m(�a)
� Km(�a)

K0

m(�a)

�
; (3:2)

where aim are the Fourier coe�cients in (2.11) calculated in the ith domain. The electric
forces on the ions are balanced by the gradient of a pressure, p = 1

2�
2�2", which gives rise

to an osmotic pressure acting on the polymer. The net pressure force in the x-direction
on the ith cylinder per unit cylinder length is

Gi ' ���2a3"q2�i1
�

K0(�a)

�aK 0

0(�a)
+ �i0

�
(3:3)

The total force per unit length acting on the ith cylinder is Fi+Gi. In most circumstances
Fi � Gi, but in conditions of high shielding osmotic pressure can be the larger, though
both forces are then small.
The electrostatic force can be thought of as the mutual repulsion of the incompletely

screened cylinders from each other. The most signi�cant contribution to the total force
on the glycocalyx is due to the force on the topmost layer of cylinders due to the cylinders
directly below them. In the high shielding limit, �b!1, this can be shown to be

F0 ' "q2a�3=2

�2a2K0

0(�a)K
0

1(�a)

e�2b�

(b�)1=2
: (3:4)
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1% 5% 10%

0.015M 3:3� 10�5 6� 10�4 1:7� 10�3

0.15 M 3 � 10�8 2� 10�5 1:2� 10�4

1.5 M 5:9� 10�18 2:5� 10�9 2:9� 10�7

Table 1. Force on uppermost cylinders per length of glycocalyx in N/m for varying ionic
strengths and v/v polymer concentrations.

Table 1 shows the variation in force per unit length on the topmost cylinder at various
polymer concentrations and ionic strengths. Under conditions of low shielding, the force is
comparable to that necessary to elongate long polymer molecules. Thus if, as is expected,
the polysaccharide chains of the glycocalyx are extremely exible, this force may cause
expansion of the glycocalyx or oppose its collapse under applied forces.

Streaming Currents

We show in MMW that shear ow over the surface of the glycocalyx either along
the axis of the rods or perpendicular to them generates a velocity pro�le within the
layer which decays to a self-similar form exponentially with depth below the surface.
Increasing polymer concentration reduces uid velocity and increases the rate of decay.
Under physiological conditions it is probable that self-similarity is attained below the
top one or two layers of the cylinders.
Above the cylinders, from (2.19) the velocity approaches exponentially the shear ow

above a virtual plate positioned at x = x� � ��0=� where � is the shear rate far
from the surface, so that u ! �(x � x�) as x ! 1. Thus the glycocalyx has the uid
mechanical e�ect of moving the apparent cell boundary to a position approximately one
rod spacing below the surface of the glycocalyx. This may be particularly important in
ow in the microvasculature (Damiano 1998). Clearly, however, ow e�ects are unlikely
to be propagated as far as the plasma membrane itself, suggesting that components
involved in the primary stages of ow transduction must be positioned in the glycocalyx
rather than the cell membrane.
The local current density j(x; y) = �u generated by axial ow is shown in Figure 7. It

will be noted that, as expected from the velocity pro�les, the only signi�cant contribution
to the total current comes from the region around the topmost cylinders. This demon-
strates that streaming current measurements provide information only about the charge
density in the outermost layer of the glycocalyx and may explain the discrepancy noted
between electrokinetically and chemically determined charge density in the glycocalyx
(Seaman 1983). Figure 7 also supports the assumption implicit in the model that the
contribution of the charge on the plasma membrane of the cell can be neglected. Figure
8 shows the dependency of the streaming current on polymer concentration for three
di�erent salt concentrations. At, or above, physiological salt concentration the current is
almost independent of salt concentration, but at one tenth physiological ionic strength
the current is both higher and more sensitive to polymer concentration. The implication
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is that electrokinetic experiments designed to determine the charge structure of the
glycocalyx could be performed most e�ectively at low ionic strength.
As we showed above, ow through the glycocalyx appears at a distance as ow over a

virtual plane at x = x�. The streaming current density j�(x) generated by ow over this
plane carrying a charge density q� is:

j�(x) = ��q�(x� x�)e��(x�x
�) and J� =

Z
1

x�
j� dx =

�q�

�
: (3:5)

The current distribution above such a plate for a suitably chosen q� is included in Figure
7. It will be seen that because the velocity close to the plate is lower than at a similar
distance above the array of cylinders the maximum current density occurs further from
the surface of the plate than the cylinders.
The currents due to the ion ux are very small, and are most easily detectable because

of the streaming potential they induce. Assuming insulating boundary conditions, charge
conservation requires a return conduction current on average equal and opposite to the
streaming current. This return current is distributed over the entire vessel and not just the
relatively thin glycocalyx layer. Associated with this current is the streaming potential,
which is in practice measured as the di�erence, ��, between two electrodes inserted
in the vessel. This measured value is therefore proportional to the electrode separa-
tion, to the wall shear-rate � and to the vessel perimeter divided by its cross-sectional
area. However, for Poiseuille ow in a cylindrical vessel, the pressure drop between the
electrodes, �p, is also proportional to these quantities and is easily measurable. The
ratio ��=�p is therefore independent of vessel size and ow rate and is suitable for
comparison between di�erent experiments. The measurements are di�cult to perform
in vivo. Higher shear-rates and more controllable conditions are obtainable in vitro, but
still the experimental conditions are not always speci�ed fully in the literature. It should
be noted that because of the relatively high conductivity and cross-sectional area of the
blood vessels, the absolute magnitude of the streaming potential is smaller than the local
potential due to ionic variations. There is thus little di�erence whether `open circuit'
or `closed circuit' boundary conditions are imposed. This may not be the case for ows
through the extracellular matrix, for example, where the currents ow through the same
cross-sectional area.
At body temperature and ionic strength and a polymer concentration of 10% v/v, the

model predicts a value

��

�p
=

1:3� 10�11

c�
= 8:6� 10�9 V=Pa ; (3:6)

assuming an electrical conductivity c = 1:5 m�1ohm�1 and a viscosity � = 10�3 Pa s.
Macroscopic blood viscosity is four times larger, but on length-scales smaller than the
red cells it is arguable that it is more appropriate to use the plasma viscosity in (3.6). In
comparison, the in vitromeasurements of Srinivasan et al. (1968) are 1:8�3:6�10�9V/Pa
for canine carotid arteries. However, they also quote measurements in vivo of 0:2� 0:5
mV, a value orders of magnitude larger than predicted. Thubrikar et al. (1980) give an
in vivo �gure of 3:1� 10�8 V/Pa, but seem to quote unrealistically large pressure drops
across a canine femoral artery.
The above calculations are for axial ow whereas in the real system the polymer

molecules may be orientated at random directions to the ow and some average of axial
and transverse ows may be appropriate. In MMW we show that the streaming currents
for axial and transverse ows are of similar magnitude but that, because of the higher
resistance to ow in the transverse direction, the ow in the axial direction will be much



10 A. J. Mestel, A. J. Mokady, K. H. Parker and C. P. Winlove

larger for a given pressure drop. There will also be a tendency for polymer chains to align
with the ow. For ow in an isotropic medium, a weighting of one third axial to two thirds
transverse has been proposed (Jackson & James 1986). In the two-dimensional system
we envision a 50:50 split may be appropriate. In view of the non-linear dependence on
the polymer concentration, the calculations should probably be performed at half the
concentration for each condition, rather than averaging the results at full concentration.
More extensive experimental data would be required to justi�ed such an undertaking.

Electrophoretic Mobility

Figure 9 shows the ow across a line through the cylinder centres (y = 0) driven by a
transverse electric �eld. The rods are stationary, so that the electrophoretic velocity
is the constant value attained as x ! 1. As x decreases down into the layers of
cylinders, a periodic pro�le is soon reached, indicating that the electrophoretic mobility
is independent of the depth of the layer.

Figure 10 shows the electrophoretic mobility for red blood cells with a glycocalyx of
volume fraction 1% and a charge separation of 1.6 nm over the range of solution ionic
strengths normally employed experimentally. Also shown in the �gure are experimental
data from Furchgott & Ponder (1941). The experimental data lie between the predicted
mobilities for axial and transverse ows and an average between the two, as discussed in
the previous section, would agree well. Also shown are the predictions of a one dimensional
model from (Levine et al. 1983) with the parameters (glycocalyx thickness, 750 nm and
polymer segment radius 70 nm) chosen best to �t the data. It should be noted, however,
that our model requires the estimation of three parameters but that of Levine et al.

requires an additional estimate of glycocalyx thickness. In the case of our model, the
agreement with experiment could be improved at low salt concentrations by using the
non-linear Poisson-Boltzmann equation.

Concluding remarks

We have demonstrated that a two-dimensional model of the glycocalyx can provide
satisfactory agreement with experimental data both on streaming potentials in blood
vessels and electrophoresis of red cells.

One of the most striking qualitative insights is the way in which the predictions depend
only on the properties of the outermost layer of the glycocalyx and this is likely to be
true, regardless of the details of the model, because of the e�ectively exponential decay
of velocity into the layer. This has implications for the inference of properties of the
glycocalyx from macroscopic measurements and for the analysis of cell-cell interactions.
Above the layer, the potential decays exponentially while the velocity varies algebraically.
It is thus plausible that changes in streaming potential would be the �rst detectable
interaction as cells approach each other (Winlove & Parker 1987).

Some of the assumptions in our approach require consideration. We employed two
widely used approximations, �rstly that there is a uniform surface charge density on the
cylinders representing the polymer chains and secondly that the cylinders are parallel
and evenly spaced. We noted that any periodic charge variation down the rods merely
re-de�nes the e�ective Debye length and does not alter the form of the solution nor
dramatically alter our conclusions. It would be easy to include in the model variations
in spacing of the rods, whether due to electrostatic repulsions or uid shear (Damiano
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1998). Flexibility of the polymer branches could best be addressed using scaling argument
approaches, e.g. Harden et al. (1997).
Our modelling makes use of the linearised equations for the electrical potential, which

is justi�ed at physiological ionic strength but breaks down at the low ionic strength
used in some experimental investigations of electrokinetic phenomena. Use of the full
non-linear equation would be feasible but more cumbersome in most parameter ranges.
The limitations of the continuum based Poisson-Boltzmann approach have already

been discussed in our earlier paper (MMW). The agreement with Monte-Carlo methods
(e.g. Le Bret & Zimm 1984) is satisfactory even near molecular length-scales.

A. Mokady was supported by a prize studentship in Mathematical Biology awarded
by the Wellcome Trust.
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Figure captions

FIGURE 1: A semi-in�nite, doubly periodic array of charged cylinders. Schematic repre-
sentations of the potential (left) and shear driven axial ow (right) are drawn (i) midway
between cylinders (y = b) and (ii) passing through the cylinders (y = 0). The potential
decays exponentially with the Debye length in x > 0, and soon becomes periodic as
x! �1. The velocity becomes self-similar in x < 0, decaying with a scale factor from
cylinder to cylinder.

FIGURE 2: The mean non-dimensional potential, � = e�=(kT ), over the boundary of a
square domain as a function of polymer concentration for three electrolyte molarities.

FIGURE 3a: The nondimensional potential � = e�=(kT ), as a function of radius, plotted
for � = 0 (top curve) and � = 1

4� (bottom curve.) The middle curve is the cylindrical cell
approximation.The polymer concentration is 10% v/v in a 0.15Mmonovalent electrolyte,
so that b = 2:80a, b0 = 3:16a, b

p
2 = 3:96a while ��1 = 1:6a.

FIGURE 3b: The variation of the mean potential over the outer domain boundary
with polymer concentration for a 0.15 M electrolyte. The line-charge and cylindrical
cell approximations are also shown.

FIGURE 4: Comparison of the linear and non-linear Poisson-Boltzmann equations using
a cylindrical cell approximation. The value of � at the outer cylindrical cell boundary is
plotted against the concentration of the surrounding electrolyte solution. The polymer
concentration is 1% v/v in �gure (a) and 10% in �gure (b).

FIGURE 5: The potential � for a semi-in�nite square array of cylinders calculated at
the centreline y = 0 and between the cylinders y = b. The polymer concentration is
10% v/v in (a) and 1% in (b) in both cases for a 0.015 M electrolyte. The line charge
approximations are also shown.

FIGURE 6: The predicted monovalent ion concentrations for a 0.15 M electrolyte and
a 10% polymer concentration. The results are for a temperature of 277 K and a charge
separation of 1.4 nm.

FIGURE 7: The local non-dimensional axial current density j(x; 0) and j(x; b) for a
semi-in�nite array of cylinders and for an equivalent charged at plate j�(x) (see text
x� = �1:802a, q� = 0:487"qa) for unit shear (� = 1), a 10% polymer concentration and
a 0.15 M monovalent electrolyte.

FIGURE 8: Variation with polymer concentration of the non-dimensional axial streaming
current, J , for di�erent electrolyte molarities. The calculation is for a temperature of 277
K, and a charge spacing of 1.4 nm.

FIGURE 9: The velocity pro�le for a transverse electric �eld, plotted along y = 0 with
the cylinders stationary. The electrophoretic velocity is given by the value as x!1. A
few cylinders down from the surface, the ow is almost periodic.

FIGURE 10: The variation of electrophoretic mobility with molarity for a 1% polymer
concentration. Experimental data from Furchgott & Ponder (1941) are compared with
our predictions for axial and transverse ows and lie between the axial and transverse
curves. Also shown is an optimally-�tted one-dimensionalmodel from Levine et al. (1983).
The temperature is 298 K and the charge separation is 1.6 nm. The mobility is in units
of 10�8 m2/(Vs).
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