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Lecture 3: Physical Measurements in the Large Arteries: Impedance Methods

"...for I dreamt last night of bloody turbulence."
                                                 Troilus and Cressida - William Shakespeare

We will concentrate primarily on the interpretation of measurements of pressure and flow (or
velocity) in the large arteries rather than the measurements themselves. Since about 50% of the
population of the UK will die of arterial disease, a great deal of attention has been paid to the
arteries. By comparison, relatively little is known about flow in veins

Pressure and flow in the large arteries exhibit complex, pulsatile waveforms



The figure shows the ECG (for reference), the pressure (P) in mmHg and the velocity (U) in cm/s
in the ascending aorta. These data were measured invasively using a catheter.

One of the prominent features of arterial flow is that the pressure and velocity produced by the
contraction of the left ventricle (LV) produce a wave which propagates throughout the arterial
system, the pulse wave. These waves were first analysed scientifically by Thomas Young in his
Croonian Lecture to the Royal Society in 1808.

Note that the flow is very pulsatile, increasing rapidly, reaching a peak, decelerating until the
reversal of flow through the aortic valve closes the valves at the end of systole. There is no 
velocity during most of diastole. This is not true of flow in the carotid artery (and the uterine
artery in pregnancy) where the flow is still pulsatile but there is substantial forward flow during
the whole of diastole. Why do you think this is?

The 'stroke' volume ejected by the LV (approximately 50 ml) is slightly less than the volume of
the ascending aorta. Therefore, the blood reaching the microcirculation is several heart beats
'away' from the LV.

Note that the pattern of flow in the coronary arteries is very different. Because the contraction of
the myocardium occludes the vessels within it, flow during systole is either zero or greatly
reduced. When the myocardium relaxes, blood can once again flow through the coronary
microcirculation and so flow in the coronary arteries is highest during diastole. It has been
argued that the need to perfuse the heart during diastole is the reason that the mean blood
pressure in the systemic circulation is high. It has to drive flow through the coronary circulation
during diastole.

 

Impedance Analysis

The standard way of analysing pressure and flow in the arteries is a Fourier transform based
method generally known as impedance analysis in reference to the analogous analysis of
electrical circuits.

Refer to:

Nichols and O'Rourke, MacDonald's Blood Flow in the Arteries (4th ed.).

Milnor, Hemodynamics.

In this method, the pressure, P(t), and velocity, U(t) (or, alternatively, the volume flow rate), are
expressed as the linear superposition of sinusoidal waveforms using the Fourier transform

P(ω) = F{P(t)}

U(ω) = F{U(t)}



 

 

Surprisingly few harmonics are
necessary to build  up a very
good approximation to the
experiementally measured
waveforms. This is shown here
where the original waveform (in
blue) is compared to the first
harmonic wave (in red), the sum
of the first and second
harmonics, the sum of the first
four harmonics, eight harmonics
and finally sixteen harmonics.
We see that sixteen harmonics
are sufficient to reproduce most
of the detail of the measured
waveform.

Because the Fourier transform is
complete, summing all of the
harmonics will give the initial
waveform exactly, noise and all.

 

By analogy to Ohms law,
relating voltage and current in
electrical circuits, it is assumed
that the pressure and velocity for
each harmonic are related

P(ω) = U(ω) Z(ω)

where Z(ω) is called the impedance. Because P(ω) and U(ω) are complex numbers (they have a
real and imaginary part), Z(ω) is also complex. It is usually represented by the polar form, i.e. its
magnitude |Z| and phase φ, where

Z(ω) = |Z| eiφ

 

For the data shown previously, the second beat in the figure showing P and U above,



the P(ω) and U(ω), magnitude and phase, are



The impedance, magnitude and phase, calculated from these data is



An example of impedance analysis: data obtained during aortic occlusion

As an example of impedance analysis, we apply it to data which were recorded during an
experiment on the effect of aortic occlusion of pressure and flow in the ascending aorta. The
control conditions are shown on the left and the data recorded during total occlusion of the upper
thoracic aorta are shown to the right. The measured data are

The Fourier transforms of P and U are complex. The magnitudes are



The phases are

The impedance is calculated at each frequency as Z = P/U. They too are complex numbers. The
magnitudes are



The very large peak at f = 8.3 Hz is the result of noise. If you examine the value of the
magnitude of the transform of U at this frequency, you will see that it is almost equal to zero.
When it is divided into the transform of P it gives an unnaturally large value. The phases are

 

Potential problems with impedance analysis

To a fluid dynamicist, the main problem with impedance analysis is its implicit assumptions of
periodicity and linearity. We have already seen that physiological data are seldom stationary and
so the assumption of periodicity is generally unrealistic. The assumption of a linear relationship
between pressure and velocity (or flow rate) is also a stronge assumption. The only examples of
flows with a linear relationship between pressure and velocity are Poiseiulle flow (steady, flow
in a long, straight tube) and Darcy flow (flow through low porosity material such as rock or soil,
where the Reynolds number of flow in the pores is very small).

 



Transfer functions

Allied to impedance analysis are the transfer function methods. In a linear system, the response
of the system can be represented by a transfer function. Once the transfer function is known, the
response of the system to any input can be determined as the convolution of the input and the
transfer function. The convolution operation is an integral operator that can be difficult to
calculate directly. However, it can be shown that the Fourier transform of a convolution is equal
to the simple product of the the Fourier transforms of the transfer function and the input function.
Thus the response of any linear system whose convolution function is known if very easy to
calculate using the FFT.

Recently this idea has been applied to determine the pressure in the ascending aorta. Researchers
determined the transfer function for the arterial system in a large number of submects by
measuring the central arterial pressure waveform invasively and the pressure waveform in the
radial artery using the non-invasive aplanation tonometry method. They then calculated the
average transfer function as a function of sex and age and bundled everything together into a
computer based machine that has been sold widely. The machine purports to give the central
arterial waveform from the measured radial artery pressure waveform.

One worry about this process is the assumption that patients in the clinic have an 'average'
transfer function. Almost by definition, people in clinics are not average - if they were, they
wouldn't be in the clinic being examined. The most important worry, however, is the assumption
that the arterial system is linear. This needs to be tested thoroughly.

 

Measured arterial pressure waveforms

We have recently measured the arterial pressure waveform as a function of distance away from
the heart in the dog under different conditionsl. The measurements were made using a catheter
based pressure transducer which was advanced to the ascending aorta from the femoral artery.
The pressure was measured over several respiratory cycles, the catheter was withdrawn 2 cm and
the pressure waveform was again measured. This was done  in steps of 2 cm from the ascending
aorta to the femoral artery. The data shown are the ensemble average waveforms at each
measurement site



The top figure shows the pressure as a function of time and distance from the heart as a 3D plot.
The bottom figure is the contour map of the same data. Notice the peak pressure decreases from
the ascending aorta for a distance of about 20 cm and then begins to increase. The peak pressure
is observed in the femoral artery where the peak pressure is significantly higher than it is at the
origin of the aorta. Also notice that you can determine the wave speed in the aorta from the slope
of the contours in the contour plot.

Similar measurements were made in a dog during infusion of methoxamine, a vasoactive drug
with some inotropic affects.



Note the enhancement of the decrease in peak pressure with distance and the ensuing increase
with distance in the distal aorta. The enhancement of the peak pressure in the femorals is even
larger than that observed in the control dog.

 


