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Abstract. In this paper we consider the one-dimensional modelling of a vascular
network based on space-time variables. Although the one-dimensional system has
been more widely studied using a space-frequency decomposition, the space-time
formulation o�ers a more direct physical interpretation of the dynamics of the
system. The objective of the paper is to highlight how the space-time representation
of the one-dimensional system can be theoretically and numerically modelled.

We derive the governing equations from �rst principles and discuss the as-
sumptions involved in constructing the system in terms of area-mass 
ux (A;Q),
area-velocity (A; u) and pressure-velocity (p; u) variables. For the non-linear hyper-
bolic system expressed in terms of the (A; u) variables the extension of the single
vessel model to a network of vessels is achieved using a characteristic decomposition
combined with conservation of mass and total pressure. The more widely studied
linearised system is also discussed where conservation of static pressure, instead
of total pressure, is enforced in the extension to a network. Consideration of the
linearised system also allows for the derivation of a re
ection coeÆcient analogous
to the approach adopted in acoustics and surface waves.

The linear and non-linear systems have been solved using a spectral/hp ele-
ment spatial discretisation with a discontinuous Galerkin projection and an Adams-
Bashforth time integration scheme. The numerical scheme is then applied to a model
arterial network of the human vascular system previously studied by Wang & Parker
[25]. Using this model we consider the role of non-linearity within this system by
comparison with the linearised results and observe only secondary contributions from
the non-linear e�ects under physiological conditions. Finally we study the e�ects of
bifurcation geometry and wave speed on reversal of waveforms in a region of low
terminal resistance as observed in vessels such as the umbilical arteries.

1. Introduction

The one-dimensional modelling of the human arterial system was intro-
duced by Euler in 1775 [4] who derived the inviscid partial di�erential
equations expressing the conservation of mass and momentum. In order
to close the problem, he also suggested two possible, but experimen-
tally unrealistic, constitutive equations describing the behaviour of the
elastic wall with changes in the lumenal pressure. Apparently, he did
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non recognise the wave-like nature of the 
ow and was not able to �nd a
solution for his equations, citing \insuperabiles diÆcultates". The wave
nature of the arterial 
ow was �rst described scienti�cally by Young
[28] who derived the wave speed using an argument based on intuition
and analogy to Newton's theory of the speed of sound in air. In 1877
Moens[14] and Kortweg[9] independently published analyses of 
ow in
thin-walled elastic vessels, deriving what is now known as the Moens-
Kortweg equation for the wave speed. Riemann[15] (1866) provided
the analytical tools for the general equations when he introduced the
method of characteristics, which was �rst applied to arterial 
ow more
than 50 years ago, most notably by Anliker and co-workers [21, 22] and
Skalak [19].

The equations derived by Euler are a system of non-linear partial
di�erential equations analogous to the shallow-water equations of hy-
drodynamics or the one-dimensional inviscid equations of gas dynamics.
However, under physiological conditions of the human arterial system,
the equations are only weakly non-linear and therefore many charac-
teristics of the 
ow can be captured by the linearised system. This
is essentially the approach of Womersley[27] (1957) who linearised the
two-dimensional equations for 
ow in straight, circular elastic tubes and
obtained the wave solution by Fourier techniques. This linear analysis
has become the `standard' model of waves in the arteries found in
most haemodynamics textbooks. The success of the linearised model
and the apparently periodic nature of the arterial system has led most
investigators since Womersley to analyse arterial 
ow in the frequency
rather than the time domain using the so-called \electrical" analogy.

Although there is a large body of work using the frequency domain
analysis, many facets of the physiological waveforms have yet to be
explained. It is the conjecture of the authors that consideration of the
solution in the frequency domain is potentially limiting. The reasons for
this are threefold. Firstly the frequency domain can lead to the implicit
assumption that the arterial system is in a state of \steady oscillation"
implying that the system will remain oscillating even when the forcing
from the heart is stopped. However, the characteristic speed of wave
propagation is so fast that the time scale to propagate information
through the whole arterial system is much smaller than the duration of
the cardiac cycle. It is generally observed in resting conditions that 
ow
in the large arteries comes to rest during late diastole. More convinc-
ingly, during ectopic beats when contraction of the heart is blocked or is
so ine�ectual that the aortic valve never opens, neither the 
ow nor the
pressure shows any hint of the previous \periodic" behaviour. Secondly,
the aortic valve is an essentially non-linear element dividing the cardiac
cycle into systole when the ventricle is open to the arteries and diastole
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when it is closed. Since the frequency domain analyses cannot distin-
guish between systole and diastole, identical systolic behaviour of the
ventricle would result in di�erent input power spectra at di�erent heart
rates. Since the fraction of the cardiac cycle occupied by systole varies
signi�cantly with heart rate, much of the characteristic behaviour of the
ventricle during systole (and the arterial system during diastole) could
be masked simply by changes in the fundamental frequency. Finally,
any analysis that depends upon frequency decomposition requires the
recombination of the frequencies to realise the physical signi�cance of
the analysis. This last step is not always performed which can obscure
the results of the analysis.

An alternative approach to analyse the one-dimensional arterial sys-
tem is to use the method of characteristics in the time-space domain.
The rest of the paper is strongly motivated by the work of Wang &
Parker [23, 25] who used a semi-analytical time-space domain approach
to model the linearised wave motion in arteries. In their model they
used a highly idealised cardiac function in a fairly realistic model of the
anatomy of the largest arteries and based their arterial model on the
data of Westerhof & Noordergraaf [26]. The method of characteristic
has also previously been applied to the study of waves by Salak [16],
Stettler et al. [21, 22] and Stergiopulos et al. [20].

The objective of this paper is to review the one-dimensional model
starting from �rst principles and to demonstrate how these equations
can be applied to linear and non-linear modelling of a vascular network.
Furthermore, we derive classical linear results, such as the re
ection
coeÆcient, which are insightful in analysing the system since the non-
linearities under many physiological conditions are relatively weak.

The paper is organised as follows, in section 2 we detail the deriva-
tion of the governing equations by considering the conservation of
mass and momentum for a single one-dimensional vessel. Introducing
the concept of a sectional algebraic pressure-area relationship we then
outline di�erent combinations of the governing equations in terms of
the variables pressure p, area A, velocity u and 
owrate Q. Using the
(A; u) system we subsequently construct both the linear and non-linear
systems in terms of characteristic variables.

In section 2.2 we extend the single vessel formulation to a network by
considering the modelling of junctions including both bifurcations, and
the topologically similar, merging 
ow junctions. Having introduced
the junction modelling we can then derive the linearised re
ection and
transmission coeÆcients which are the direct analogy to the coeÆcients
commonly applied in acoustics and surface waves [10, 11]. Finally to
complete the network description, boundary conditions at the out
ow
are required which are enforced using a terminal resistance which forces
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the incoming wave to be the scaled re
ection of the outgoing wave
[25, 20].

In section 3 we outline the numerical discretisation of the govern-
ing (A; u) system using a discontinuous Galerkin formulation with a
one-dimensional spectral/hp element spatial approximation. This for-
mulation allows us to combine the fast convergence and good dispersion
properties, commonly associated with the spectral methods, with the
geometric 
exibility to discretise each vessel in the branching network.
Finally in section 4 we apply the one-dimensional model to a branching
network containing 55 arteries, previously studied by Wang & Parker
[23, 25], as well as analysing the e�ect of bifurcation re
ections on 
ow
waveforms in a model system with low terminal resistance.

2. Problem Formulation

2.1. Governing equations for a single vessel

A(s,t)

(a)

s

(s,t)

A(x,t)

xu(x,t)

(b)

Figure 1. Nomenclature for the model of a one-dimensional vessel. (a) general
orientation, (b) one-dimensional orientation.

Consider a vessel of length l with a centreline described by s(x)
and cross sectional area normal to s denoted by A(s; t) as indicated in
�gure 1(a). Our �rst modelling simpli�cation will be to assume that the
local curvature is everywhere small enough so that the axial direction
can be described by a Cartesian coordinate x as shown in �gure 1(b)
so that the problem can be de�ned in one-dimension. At each cross
section we de�ne A(x; t) =

R
S d� as the area of the cross section S and

u(x; t) = 1
A

R
S ûd�; p(x; t) =

1
A

R
S p̂d� as the average velocity and inter-

nal pressure over the cross section where û(x; �; t) and p̂(x; �; t) denote
the values of velocity and pressure within a constant x-section. We also
introduce the dependent variable Q(x; t) = Au which represents the
mass 
ux at a given section.

We therefore have three independent variables A; u; p or equivalently
A;Q; p. The required three independent equations will be provided by
the equations of conservation of mass and momentum and a consti-
tutive equation relating cross sectional area to internal pressure. In
what follows, we shall also assume that the 
uid is incompressible and
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Newtonian and so the density � and dynamic viscosity � are constant.
Our �nal modelling assumption is that the structural arterial properties
are constant at a section.

In the sections 2.1.1 and 2.1.2 we shall derive conservation of the
mass and momentum equations starting from a control volume state-
ment. As we shall see in section 2.1.1, applying the mass conservation
statement to a control volume allows us to derive the Windkessel equa-
tion commonly used in reduced modelling of the arterial system [6].
This statement does not, however, inform us about the dynamics of
the system along the vessel which is where the one-dimensional system
proves to be more insightful. The dynamics of the one-dimensional sys-
tem are more easily understood in terms of the characteristic variables
which are derived in section 2.1.5. However before doing so we de�ne
the pressure area relationship and alternative forms of the mass and
momentum equations in sections 2.1.3 and 2.1.4.

2.1.1. Mass conservation equation

De�ning the vessel shown in �gure 1(b) as our control volume, con-
servation of mass requires that the rate of change of mass within the
control volume plus the net mass 
ux out of the control volume is zero.
Denoting the volume as V (t) =

R l
0 A dx, where l is the length of the

vessel and assuming there is no seepage through the side walls the mass
conservation can be written as

�
dV (t)

dt
+ �Q(l; t)� �Q(0; t) = 0: (1)

If seepage does occur it is possible to include a term can be included
to accomodate this contribution.

To determine the one-dimensional equation of mass conservation,
we substitute V (t) =

R l
0 A(x; t)dx into equation (1) and note that

Q(l; t)�Q(0; t) =

Z l

0

@Q

@x
dx

to obtain

�
d

dt

Z l

0
A(x; t)dx + �

Z l

0

@Q

@x
dx = 0:

If we assume l is independent of time we can take the time derivative
inside the integral to arrive at

�

Z l

0

�
@A

@t
+
@Q

@x

�
dx = 0:

Since we have not speci�ed the length l, the control volume if arbitrary
and so the above equation must be true for any value of l and so in
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general we require that the integrand is zero. We therefore obtain the
di�erential one-dimensional mass conservation equation

@A

@t
+
@Q

@x
=
@A

@t
+
@uA

@x
= 0 (2)

Remark: The control volume statement (1) can be used to obtain
the time variation of the \Windkessel" pressure as originally discussed
by Frank [7]. Introducing the vessel compliance C, de�ned as C = dV

dP
where P is an appropriate average of the pressure p over length l, and
applying the chain rule in conjunctions with equation (1) leads to

dP

dt
=
dP

dV

dV

dt
=
Q(0; t)�Q(l; t)

C
: (3)

The de�nition of compliance as a constant implicitly assumes a uniform
variation of pressure within the volume of the vessel. Therefore if we
know the in
ow 
ux Q(0; t) and de�ne a relationship between Q(l; t)
and pressure P (t) then equation (3) can be integrated to determine a
temporal pressure variation within the vessel. Normally the out
ow is
assumed to be related to the pressure by a momentum type relationship
of the fromQ(l; t) = (P (t)�P1)=R where P1 is an asymptotic pressure
and R is the e�ective resistance of the peripheral systemic circulation.
Nevertheless, we recall that it is the pressure gradient which drives the

ow within the vessel and so the uniform in space temporal pressure
variation does not signi�cantly a�ect the dynamics of the 
ow velocity.
As noted in recent work by Wang et al. [24] the temporal Windkessel
pressure does however contribute to the late diastole pressure time
history within the vessels.

2.1.2. Momentum equation

Again we consider the vessel as our control volume and assume that
there is no 
ux through the side walls in the x-direction. The mo-
mentum equation states that the rate of change of momentum within
the control volume plus the net 
ux of momentum out of the control
volume is equation to the applied forces on the control volume and can
be stated over an arbitrary length l as

d

dt

Z l

0
�Qdx+ (��Qu)l � (��Qu)0 = F (4)

where we recall that Q = Au and de�ne F as the applied forces in the
x-direction acting on the control volume. Since �Q = �uA = �

R
S ûd�

represents the x-momentum integrated over the section S, the left-
hand side of equation (4) is analogous to the left-hand side of the
mass conservation given by equation (1). However in the momentum
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balance we have introduced a momentum 
ux correction factor `�'
which accounts for the non-linearity of the sectional integration in terms
of the local velocity û, i.e.Z

S
�(û)2d� � ��u2A = ��Qu ) �(x; t) =

R
S û

2d�

Au2
:

When the the 
ow pro�le is uniform over a section � = 1.
To complete equation (4) we need to de�ne the applied forces F

which typically involve a pressure and viscous force contribution, i.e.

F = (pA)0 � (pA)l +

Z l

0

Z
@S
p̂nxdsdx+

Z l

0
fdx (5)

where @S is the boundary of section S, nx is the x-component of the
surface normal and f represents is the friction force per unit length.
The side wall pressure force given by the double integral can be sim-
pli�ed by assuming constant sectional pressure and treating the tube
as axisymmetric, the term becomesZ l

0

Z
@S
p̂nxdsdx =

Z l

0
p
@A

@x
dx: (6)

Finally if we combine equations (4), (5) and (6) we obtain the control
volume statement of momentum conservation

d

dt

Z l

0
�Qdx+ (��Qu)l � (��Qu)0 = (pA)0 � (pA)l

+

Z l

0
p
@A

@x
dx+

Z l

0
fdx (7)

To obtain the one-dimensional di�erential momentum equation we ob-
serve that

(��Qu)l�(��Qu)0 =

Z l

0

@(��Qu)

@x
dx; (pA)0�(pA)l = �

Z l

0

@(pA)

@x
dx

which, upon substitution into (7) and assuming l is independent of time
and � is constant, gives us

�

Z l

0

�
�
@Q

@t
+ �

@(�Qu)

@x

�
dx =

Z l

0

�
�@(pA)

@x
+ p

@A

@x
+ f

�
dx:

Once again this relationship is satis�ed for an arbitrary length l and so
can only be satis�ed when the integrands are equal. The one-dimensional
momentum equation becomes

@Q

@t
+
@(�Qu)

@x
= �A

�

@p

@x
+
f

�
(8)
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where we have simpli�ed the right-hand side pressure gradient terms.

2.1.3. Pressure-Area Relationship and Distensibility

The mass and momentum equations (2) and (8) give us two equations
with three unknowns A; u and p or alternatively A;Q and p. We need to
close the system by de�ning an explicit algebraic relationship between
the sectional pressure p and area A. In the following analysis we restrict
our attention to sectional algebraic relationships functionally denoted
by

p = f(A;x; t): (9)

The pressure is assumed to be dependent upon the area and its deriva-
tives. The area is therefore implicitly dependent upon time and space.
Although the wall properties of a vessel alter the scaling of the rela-
tionship (9), they are not independent variables although they may be
depend upon the area.

From the functional form of the pressure area relationship we de�ne
the distensibility D as:

D =
1

A

dA

dp
: (10)

The algebraic form we will adopt later in this paper assumes a
thin wall tube where each section is independent of the others. Using
Laplace's law leads to a pressure area relationship of the form

p = pext + �(
p
A�

p
A0) (11)

where

�(x) =

p
�h0E

(1� �2)A0
:

Here h0(x) and A0(x) denote the vessel wall thickness and sectional
area at the equilibrium state (p; u) = (pext; 0), E(x) is the Young's
modulus, pext is the constant external pressure, and � is the Poisson
ratio, typically taken to be � = 1=2 since biological tissue is practically
incompressible. The distensibility for the pressure relation (11) is

D =
2

�
p
A
:
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2.1.4. The (A; u), (A;Q) and (p; u) systems
We can write the governing one-dimensional system in terms of the
variables (A;Q) as

@A

@t
+
@Q

@x
= 0 (12)

@Q

@t
+
@�Q2=A

@x
= �A

�

@p

@x
+
f

�
(13)

This system together with the pressure-area relation, is one of the most
general form of one-dimensional models and has been used in [5]. This
system, with a slightly di�erent pressure relationship, has been shown
by Canic and Kim [1] to lead to smooth solutions under some reasonable
conditions on the smoothness of boundary and initial data. Two critical
assumptions needed to reach this conclusion are the pulsatility of the
in
ow data and a bound on the length of the tube, both are veri�ed for
physiological 
ows in the human arterial tree. In the same work it is
also shown that, if the solution is smooth and the initial and boundary
data are such that A > 0, A remains strictly positive for all times.
Finally we note that Formaggia et al. [5] also used system (12-13) to
derive an energy inequality which bounds a measure of the energy of
the hyperbolic system, as well as an an entropy function for the system.

Alternatively we can write the system in terms of the variables
(A; u). To manipulate the momentum equation (13) it is convenient
to write it as

u

�
@A

@t
+
@uA

@x

�
+ u

@(�� 1)uA

@x
+A

�
@u

@t
+ u

@�u

@x

�
= �1

�

@p

@x
+
f

�

where the �rst bracketed expression is the mass conservation equation
(12) and is therefore zero.

If we assume inviscid 
ow with a 
at velocity pro�le, which implies
that � = 1 and f = 0, we can write the one-dimensional system in
terms of the (A; u) variables as

@A

@t
+
@uA

@x
= 0 (14)

@u

@t
+
@u2=2

@x
= �1

�

@p

@x
: (15)

In both the systems (12-13) and (14-15) we can introduce the pres-
sure area relationship through the pressure gradient term by noting
that

@p

@x
=

1

DA

@A

@x
+ r(x): (16)
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Where we observe that A = A(p) and r(x) represents the other spa-
tial dependencies in the pressure area relationship. For example in the
pressure area relationship given by equation (11)

r =
@p

@�

@�

@x
+

@p

@A0

@A0

@x
:

Finally, from a clinical perspective, it is convenient to consider the
system in terms of the variables (p; u) since these are the physically
measurable variables. Using the de�nition of distensibility and assum-
ing � and A0 are constant, we obtain

@A

@t
= DA

@p

@t
and

@A

@x
= DA

@p

@x
:

The inviscid one dimensional system can now be written in terms of
the (p; u) variables as

@p

@t
+ u

@p

@x
+

1

D

@u

@x
= 0 (17)

@u

@t
+
@u2=2

@x
= �1

�

@p

@x
(18)

In summary we note that the most general system derived in this
section is represented in terms of the (A;Q) variables as given by
equations (12) and (13). Under the assumption of inviscid 
ow with
a 
at velocity pro�le we can obtain a form in terms of the variables
(A; u) as given by equations (14) and (15) both systems also require an
algebraic pressure area relationship. We note that the (A; u) system has
a very compact conservative form which will lead us to adopt this form
in the next section. Finally the most restrictive system is the system
described by equations (17-18) in terms of the (p; u) variables. Here we
have assumed inviscid 
ow with a 
at velocity pro�le and that material
properties, � and equilibrium area A0 are constant.

2.1.5. The Characteristic System

Considering equations (14) and (15) with the pressure-area relationship
(11), when � and A0 are constant, we can write the system in non-
conservative form as

@U

@t
+H(U)

@U

@x
= 0 (19)

where

U =

�
A
u

�
H =

"
u A
1

�DA u

#
;

paper.tex; 6/12/2002; 17:58; p.10



1D vascular modelling 11

and we have also applied equation (16).
Under the assumption that A > 0,indeed a necessary condition

to have a physically relevant solution, the matrix H has two real
eigenvalues

�1;2(H) = u� c

where c = 1p
�D

is the wave speed for the non-linear system. For typical

values of velocity, vessel area and the elastic parameter � encountered
in arteries under physiological conditions, we �nd that �1 > 0 and
�2 < 0.

In system (19) the matrix of left eigenvalues, L, ofH can be written
as

L =

� c
A 1
� c

A 1

�
(20)

where

LH = �L and � =

�
�1 0
0 �2

�
:

Noting that H = L�1�L and premultiplying system (19) by L we
obtain

L
@U

@t
+�L

@U

@x
= 0: (21)

Finally we can introduce a change of variables such that @W
@U

= L

where W = [W1;W2]
T is the vector of characteristic variables which

transforms equation (21) into

@W

@t
+�

@W

@x
= 0

which is a system of decoupled scalar equations, i.e.

@W1

@t
+ �1

@W1

@x
; = 0 (22)

@W2

@t
+ �2

@W2

@x
: = 0 (23)

The scaling of L in (20) was chosen so that
@2W1;2

@A@u =
@2W1;2

@u@A and we
can determine the characteristic variables as

W1;2 =

Z u

u0
du�

Z A

A0

c

A
dA = u� u0 �

Z A

A0

c

A
dA (24)

where (u0; A0) is taken as a reference state. The characteristic variables
given by equation (24) are also the Riemann invariants of the system
(14) and (15) in terms of the (A; u) variables.
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For the pressure area relationship de�ned in equation (11) we can
derive an explicit form ofW . Recalling that c = 1=

p
�D and evaluating

D for the pressure area relationship (11), we obtain

W1;2 = u� 4(c � c0) = u� 4

s
�

2�

�
A1=4 �A

1=4
0

�
(25)

where we have assumed that u0 = 0 when A = A0.
System (19) can be linearised about the diastolic conditions A = A0

and u = 0. Denoting the linearised perturbation variables for area and
velocity as a and u0, respectively, substituting u = u0 and A = A0 + a
into equation (19) and ignoring quadratic terms we obtain

@U0

@t
+H0(U0)

@U 0

@x
= 0 (26)

where

U0 =

�
a
u0

�
; H0 =

"
0 A0
1

�D0A0
0

#
and D0 = D(A0):

Following a similar derivation as for the non-linear system the lin-
earised wave speed is �01;2(H0) = �c0 where c0 = 1p

�D0

and the

linearised characteristic variablesW 0 = [W 0
1 ;W

0
2 ]
T is

W 0
1;2 = u0 �

Z A

A0

c0
A0

dA = u� c0
A0

a (27)

where u = u0 + u0; A = A0 + a.
Finally we also observe that the expression of the characteristic

variables in terms of (p; u) can also be obtained from �rst principles or
by using the distensibility de�nition in equation (24) since,

W1;2(p; u) =

Z u

u0
du�

Z p

p0

c

A

dA

dP
dP = u�

Z p

p0
cDdP: (28)

For the linearised (p; u) system equation (28) can be integrated to
determine

W 0
1;2(p; u) = u0 �

Z p

p0
c0D0dP = u0 � p0

�c0
(29)

where D0 = 1=(�c20) and p = p0 + p0.

paper.tex; 6/12/2002; 17:58; p.12



1D vascular modelling 13

2.2. Junctions, the Linear Reflection Coefficient and

Terminal Resistance

2.2.1. Splitting 
ows at Junctions

The one-dimensional model of the compliant tube can be extended to
handle the arterial tree by imposing suitable interface conditions at
the bifurcations or branching points of the tree. Assuming we have an
initial compatible state (Ai; ui) within each vessel of the bifurcation,
we need to determine the values of the variables (A; u) in all vessels
at a later time. The variables (A; u), as well as A0 and � can all be
discontinuous at a junction and so the solution at this point can be
considered as the solution to a Riemann problem.

From the decomposition (22-23) into characteristic variablesW1;W2

of the governing system (14-15) we know that the system can be inter-
preted in terms of a forward and a backward travelling waves.

3

2

1

x

Figure 2. Notation for arterial tree bifurcation.

Considering the model bifurcation con�guration shown in �gure 2
where we denote the parent vessel by an index 1 and the upper and
lower daughter vessels by the indices 2 and 3, respectively. At the bi-
furcation we have six unknowns: (A1; u1) in the parent vessel; (A2; u2)
in the upper daughter vessel and (A3; u3) in the lower daughter vessel.

Looking at the problem from the characteristic point of view, in-
formation can only reach the bifurcation from within vessel 1 by a
forward travelling wave. The forward travelling wave is governed by
equation (22) in terms of the characteristic variableW 1

1 that according
to equation (25) is a function of (A1; u1). Here the superscript denotes
the vessel number. Similarly within the daughter vessels information
can only reach the bifurcation by a backwards travelling wave which is
governed by equation (23) with characteristic variables W 2

2 (A2; u2) or
W 3

2 (A3; u3). The hyperbolic nature of the problem reduces the incom-
ing information to three constant characteristic variables W 1

1 ;W
2
2 and

W 3
2 . The �rst three equations of the Riemann problem are obtained by

imposing that the characteristic variables in each vessel should remain
constant. From the de�nition of the characteristic variables for the
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14 Sherwin, Franke, Peir�o & Parker

non-linear system, given by equation (25), we have

u1 + 4(c1 � c10) = W 1
1 (30)

u2 � 4(c2 � c20) = W 2
2 (31)

u3 � 4(c3 � c30) = W 3
2 (32)

where c10; c
2
0; c

3
0 are the values of the wave speed c evaluated using the

equilibrium area A0 in vessels 1; 2 and 3, respectively.
To close the problem we require another three independent equa-

tions. The �rst condition is physically motivated by requiring that
the mass is conserved through the bifurcation and therefore mass 
ux
balance results in Q1 = Q2+Q3. The other two conditions are obtained
from the requirement of continuity of the momentum 
ux at the bifur-
cation. This leads to the condition that total pressure p+ 1

2
�u2 should

be continuous at the boundary. These requirements provide the three
additional equations:

A1u1 = A2u2 +A3u3 (33)

p1 +
1

2
�u21 = p2 +

1

2
�u22 (34)

p1 +
1

2
�u21 = p3 +

1

2
�u23: (35)

For the linearised system (26) the continuity of 
ux in the momen-
tum equation leads to the equivalent condition that the static pressure
should be continuous through the bifurcation.

In summary, the six equations given by (30-35) de�ne a non-linear
system of algebraic equations which determine the values (A1; u1),
(A2; u2) and (A3; u3) at the bifurcation. The inputs to the system are
the material properties of the vessels � or equivalently D, the vessel
equilibrium areas A0 at the bifurcation and the values of W 1

1 , W
2
2 and

W 3
2 which can be evaluated from the initial equilibrium state (Ai; ui) in

each vessel. The solution to this Riemann problem is used to evaluate an
upwind 
ux at the junction in the numerical discretisation as discussed
in section 3.

2.2.2. Merging Flows at Junctions

Although considerable attention has been paid to the analysis of split-
ting of 
ows at arterial junctions, it is also of interest to study 
ows
that merge at junctions. This is a common situtation in veins and at
a number of junctions in the systemic arteries, such as the junction
between the vertebral arteries and the basilar artery at the base of
the brain. It is also important in surgical interventions such as arterial
bypass grafting where an anastomosis or cross-connection is surgically
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1D vascular modelling 15

introduced to provide an alternative path around a blockage typically
caused by atheromatous disease.

3
2

x

1

Figure 3. Notation for merging 
ow junction.

The conditions at the junction can be derived as previously. The
downstream daughter vessels (labelled 2 and 3) in �gure 3 are orien-
tated in opposite directions to the splitting 
ow case of section 2.2.1.
Forward travelling characteristic waves bring information to the junc-
tion in both vessels 1 and 3. The only backward travelling information
arrives at the junction from vessel 2. The merging junction therefore
uses the following characteristic equations

u1 + 4(c1 � c10) = W 1
1 (36)

u2 � 4(c2 � c20) = W 2
2 (37)

u3 + 4(c3 � c30) = W 3
1 : (38)

Mass conservation now becomes

A1u1 +A3u3 = A2u2: (39)

Since continuity of total pressure remains unchanged the six equa-
tions given by (34-39), de�ne a non-linear system of algebraic equa-
tions which determine the values (A1; u1), (A2; u2) and (A3; u3) at the
anastomosis.

We observe that the merging 
ow of �gure 2 and the splitting 
ow
shown in �gure 3 are geometrically similar. A transformation x! �x
and swapping the numbering of vessel 1 and 2 in �gures 2 and 3 or,
alternatively, a transformation u3 ! �u3 will map one 
ow into the
other since under this mapping W 3

2 = �W 3
1 .

2.2.3. Linear Re
ection CoeÆcient, Rf

Under physiological conditions it is argued that the non-linearity of
the (A; u) system (14),(15) is relatively small. Therefore it is of interest
to study the role of junctions such as splitting and merging 
ow at
junctions under the assumptions of the linearised system. Classical
analysis in related linearised problems of acoustics and surface waves
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16 Sherwin, Franke, Peir�o & Parker

[10, 11] has adopted the use of a re
ection coeÆcient when a wave meets
a boundary. As originally demonstrated by Frank [7], it is also possible
to obtain a re
ection coeÆcient , Rf , for the linearised system relating
the jump in velocity, area or pressure of an incoming perturbation to
the re
ected jump in velocity, area or pressure.

a)

1u’

1a

3a

2u’
2a

3u’

1 1a +   a∆

1 1u’ +  u∆

b)

2a

3u’
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1 a +   a1δ

3a +    a3
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2a +   a2δ
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c)

δ1 1u’ +  u
1 a +   a1δ

3u’ 3a

3a +   a3δ
3u’ +  u3δ

3u’ 3a

2u’ 2a

2a +   a2δ
2 u’ +  u2δ

2u’ 2a

2W 2W1W

1 1a +   a∆
1 1u’ +  u∆

1u’ 1a

x
Vessel 3

t

x
Vessel 2

t

x

t

Vessel 1

C

DB

A
E

F

G

H

Figure 4. Linearised wave re
ecting o� a bifurcation. a) Con�guration just before
the perturbation meets the bifurcation. b) Con�guration just after the perturbation
meets the bifurcation. c) Characteristic x-t plot of each vessel during re
ection.

To derive the re
ection coeÆcient, Rf , we consider the con�guration
shown in �gure 4(a) where a perturbation of �u1;�a1 on the equilib-
rium conditions (denoted by overbars) leads to a forward travelling
wave in vessel 1. After reaching the junction there is a change in the
equilibrium state so that there is a perturbation travelling in all vessels
denoted by Æu; Æa.

As with the non-linear system we start by considering the character-
istic information approaching the junction which for the linear system
can be simpli�ed into a perturbation form. We note that the forward
travelling linearised characteristic W 0

1 in vessel 1, just after the wave
reaches the junction, must be constant. Considering a characteristic
line such as A-B in �gure 4(a) we know that along this characteristic

�u01 + Æu1 +
c10
A1
0

(�a1 + Æa1) =W 0
1 (40)
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and, just before the re
ection, we also know that

W 0
1 = �u01 +�u1 +

c10
A1
0

(�a1 +�a1): (41)

Combining equations (40) and (41) allows us to eliminate W 0
1 . The

linearity of the characteristic equations also implies that

Æu1 +
c10
A1
0

Æa1 = �u1 +
c10
A1
0

�a1: (42)

A similar process for the backwards travelling linear waves, W 0
2 in

vessels 2 and 3 (see lines C-D and E-F in �gure 4(c)) leads to the
analogous conditions

Æu2 � c20
A2
0

Æa2 = 0 (43)

Æu3 � c30
A3
0

Æa3 = 0 (44)

We require three additional equations to solve the six perturbation
states. This is once again provided by linearised mass 
ux conserva-
tion, and in the case of the linear equations, pressure continuity. Mass
conservation for the linearised system reads as

A1
0Æu1 = A2

0Æu2 +A3
0Æu3 (45)

where we assume that the mass 
ux is conserved for the equilibrium
state, i.e. A1

0�u
0
1 = A2

0�u
0
2 + A3

0�u
0
3. Pressure continuity at the bifurcation

implies that Æp1 = Æp2 = Æp3 which provides the two �nal equations in
terms of static pressure perturbation. To close the system we recall that
the de�nition of distensibility for the linear system is D0 = D(A0) =
1
A0

dA
dP

���
A0

which upon integration about the linearised state results in

Æp =
1

D0A0
Æa: (46)

Finally using the fact that D0 = 1=(�c20), pressure continuity can be
expressed in terms of area perturbations as

(c10)
2

A1
0

Æa1 =
(c20)

2

A2
0

Æa2 =
(c30)

2

A3
0

Æa3: (47)

Equations (42-45) and (47) represent a linear system of six equations
in terms of (Æu; Æa) within each vessel, assuming (�u1;�a1) is known.
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18 Sherwin, Franke, Peir�o & Parker

Substituting equation (42),(43) and (44) into (45) and using equation
(47) to express Æa2, Æa3 in terms of Æa1 we obtain

 
A1
0

c10
+
A2
0

c20
+
A3
0

c30

!
Æa1 =

 
A1
0

c10

!2

�u1 +

 
A1
0

c10

!
�a1: (48)

This equation can be put into a more compact form by noticing that
the changes across the forward travelling incoming wave in vessel 1,
�u1 and �a1, are related through the characteristic of any backward
travelling wave, for example line G-H in �gure 4(c). This leads us to
the condition

�u01 +�u1 � c10
A1
0

(�a1 +�a1) = �u01 �
c10
A1
0

�a1

which simpli�es to

�u1 � c10
A1
0

�a1 = 0: (49)

Combining equations (48) and (49) we arrive at

Æa1
�a1

=
2
A1

0

c1
0

A1

0

c1
0

+
A2

0

c2
0

+
A3

0

c3
0

: (50)

Consistentwith the work on surface tidal waves [10] we de�ne the re
ec-
tion coeÆcient [25], Rf as the ratio of the change of pressure across the

re
ected wave, Æ̂p = Æp��p, to the change of pressure in the incident
wave, �p. From equation (46) we note that a change in pressure is

equivalent to a change in area, the re
ected wave Æ̂a1 is de�ned as
Æ̂a1 = Æa1��a1 and so the linear re
ection coeÆcient for our problem
can be written as

Rf =
Æ̂a1
�a1

=

A1

0

c1
0

� A2

0

c2
0

� A3

0

c3
0

A1

0

c1
0

+
A2

0

c2
0

+
A3

0

c3
0

: (51)

Using the characteristic perturbation equations (42) and (49) we fur-
ther note that the linear re
ection coeÆcient for perturbations in ve-
locity is the negative of equation (51), i.e. Æ̂u=�u = �Rf . Finally the
transmission coeÆcient, T , can be de�ned as the ratio of the pressure
perturbation transmitted to vessels 2 or 3 to the pressure perturbation
in vessel 1, i.e. T = Æp2=�p1 = Æp3=�p1. Since pressure is constant at
the bifurcation for the linearised system we get T = Æp1=�p1 = 1+Rf .
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We note that the anatomical features of bifurcations in the human
arterial system are such that forward travelling waves in the parent
vessel are well matched and therefore

A1
0

c10
� A2

0

c20
� A3

0

c30
� 0:

Howevr this necssarily means that the backwards travelling waves are
not well matched since

A2
0

c20
� A1

0

c10
� A3

0

c30
6= 0:

Two other observations on the linear re
ection coeÆcient Rf are note-
worthy. Firstly that the result for vessels 2 and 3 are analogous and
can be obtained directly by permuting the vessel indices. Secondly,
the symmetry between the splitting and merging junctions discussed
in section 2.2.2 implies that the re
ection coeÆcient for the merging

ows is identical to that de�ned by equation (51).

2.2.4. Terminal Resistance, Rt

The systemic and pulmonary human arterial system is a network of
large arteries branching out into many smaller arteries that continue to
bifurcate into arterioles and capillaries of the micro circulation which
are very small and numerous. If we are only interested in the larger
arteries in the network, the problem can be reduced in size by only
modelling a part of the network. However the networks of blood ves-
sels further down the arterial system will also be re
ecting backward
travelling waves in the body. Therefore an approximation needs to be
included for these re
ections at the boundary of the modelled arteries.
This introduces the concept of terminal resistance.

In the current work we adopt a de�nition of the terminal resistance,
Rt, as the negative of the ratio of the incoming characteristic variable
at the boundary, W2, to the outgoing characteristic variable, W1, i.e.

Rt = �W2

W1
: (52)

In the above de�nition we assume that W1 and W2 have been de�ned
with respect to the equilibrium state as is the case in equations (25),
(27) and (29). A value of Rt = 1 represents a full re
ection of the
outgoing wave whereas Rt = 0 corresponds to no re
ection or an
absorbing out
ow. Since u = (W1 +W2)=2 the de�nition (52) implies
that u = W1(1 � Rt)=2 and so a value of Rt = 1 represents a total
blockage condition u = 0.
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The de�nition of terminal resistance given in equation (52) has pre-
viously been adopted in the work of Wang et al. [25]. To relate the
above de�nition to their work, we recall that the form of the linearised
characteristic variables is given in terms of (u0; p) by equation (29) and
note that the terminal resistance for this system can be de�ned as

Rt = �W
0
2

W 0
1

= �
u0 � p

�c0

u0 + p
�c0

= ��c0 �
p
u0

�c0 +
p
u0

= �Rp � �c0
Rp + �c0

: (53)

Rp = p=u0 represents the resistance of the arterial network beyond the
terminal vessel. An approach for calculating the terminal resistance was
proposed by Sergiopulos & Young [20] who assumed that p is the pres-
sure upstream of the vessel and u0 is the mean velocity in the terminal
vessels. The mean velocity is based on the conserved distribution of
blood 
ow in the body and the venous pressure is assumed to be zero.

3. Numerical Discretisation

The principal numerical challenge of modelling the one-dimensional ar-
terial network is to propagate waves for many periods without su�ering
from excessive dispersion and di�usion errors. Since the characteristic
system is inherently subcritical (i.e. u << c) and does not produce
shocks under physiological conditions, high-order methods are attrac-
tive due to the fast convergence of the phase and di�usion properties
with order of the scheme [17, 8].

The discontinuous Galerkin formulation is a convenient formulation
for high-order discretisation of hyperbolic conservation laws. Following
the work of Cockburn and Shu [3] and Lomtev, Quillen and Karniadakis
[12] we proceed as follows.

The one-dimensional inviscid hyperbolic system (14-15) can be writ-
ten in conservative form as

@U

@t
+
@F

@x
= 0 where U =

�
A
u

�
;F =

"
uA

u2

2
+ p

�

#
: (54)

To solve this system in a domain 
 = (a; b) discretized into a mesh of
Nel elemental non-overlapping regions 
e = (xle; x

u
e ), such that xue =

xle+1 for e = 1; : : : ; Nel, and

Nel[
e=1


e = 
;
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we start by constructing the weak form (54) with respect to a set of
weak vector spaces �, i.e.�

@U

@t
;�

�



+

�
@F

@x
;�

�



= 0 (55)

where

(u;v)
 =

Z


u v dx:

is the standard L2(
) inner product. Decomposing the integral into
elemental regions we obtain

NelX
e=1

"�
@U

@t
;�

�

e

+

�
@F

@x
;�

�

e

#
= 0: (56)

Integrating the second term by parts leads to

NelX
e=1

�
@U

@t
;�

�

e

�
�
F ;

d�

dx

�

e

+ [� � F ]xue
xle

= 0 (57)

To get the discrete form of our problem we choose U to be in the
�nite space of L2(
) functions which are polynomial of degree P on each
element. We indicate an element of such a space using the superscript
Æ. We also note that U Æ may be discontinuous across inter-element
boundaries. To attain a global solution in the domain 
 we need to allow
information to propagate between the elemental regions. Information
is propagated between elements by upwinding the boundary 
ux in the
third term of equation (57). Denoting the upwinded 
ux as F u the
discrete weak formulation can now be written as

NelX
e=1

 
@U Æ

@t
;�Æ

!

e

�
 
F (U Æ);

d�Æ

dx

!

e

+
h
�Æ � F u

ixue
xle

= 0; (58)

Following the traditional Galerkin approach, we choose the test func-
tion within each element to be in the same discrete space as the numer-
ical solution U Æ. At this point, if we de�ne our polynomial basis and
choose an appropriate quadrature rule, we have a semi-discrete scheme.

Finally we select our expansion bases to be a polynomial space of
order P and expand our solution on each element e in terms of Legendre
polynomials Lp(�), i.e.

U Æj
e
(xe(�); t) =

PX
p=0

Lp(�)Û
p
e(t):
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where, following standard �nite element techniques, we consider � in
the reference element 
st = f�1 � � � 1g and introduce the elemental
aÆne mapping

xe(�) = xle
(1� �)

2
+ xue

(1 + �)

2
:

We note that the choice of discontinuous discrete solution and test func-
tions allow us to decouple the problem on each element, the only link
coming through the upwinded boundary 
uxes. Legendre polynomials
are particularly convenient because the basis is orthogonal with respect
to the L2(
e) inner product. To complete the discretisation, we require
a time integration scheme. In the current scheme we have adopted an
Adams-Bashforth scheme.

The calculation of the upwind 
ux F u is an essential component of
the discontinuous Galerkin formulation. Through the evaluation of the
upwind 
ux we are able to enforce information propagation between
elemental boundaries either within a single vessel or at a junction. It
also allows us to impose both in
ow and out
ow boundary conditions
in a weak sense. For a more detailed discussion see reference [18].

4. Application

In this section we apply the numerical discretisation of section 3 to the
one-dimensional model network in terms of (A; u) variables as discussed
in section 2. We shall focus on two applications. In section 4.1 we shall
consider a network of 55 arteries, previously considered by Wang &
Parker, and in section 4.2 we will consider a simpli�ed model of a
reduced network to discuss the in
uence of a re
ection at a bifurcation
on the reversal of the 
ow waveform.

Any network of vessels can be characterised in terms of its ge-
ometrical and dynamic similarity. Geometric similarity for the one-
dimensional system requires that the ratio of the vessel lengths and
diameters to a characteristic scale is the same. For example, we can
choose to de�ne the network with respect to a reference diameter d0
such as the aortic diameter. To complement the geometric similarity
we also de�ne two dynamic parameters; the Mach number,M , and the
Strouhal frequency, St, de�ned as

M =
u

c0
= u

p
�D0; St =

d0
c0T

:

Recall that c0 = 1=
p
�D0 is the linearised wave speed and is related to

the linearised distensibility D0, � is the 
uid density and T is the time
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scale of the input wave normally associated with cardiac cycle. Under
the non-dimensionalisation

x? =
x

d0
; A? =

A

d20
; u? =

u

u0
t? =

t

T
; p? = pD0

where u0 is a characteristic convection velocity (for example the mean
in
ow velocity), the (A; u) system (14-15) can be written as

St

M0

@A?

@t?
+
@A?u?

@x?
= 0

St

M0

@u?

@t?
+

@

@x?

 
p?

M2
0

+
(u?)2

2

!
= 0

where M0 = u0=c0. We note that St=M0 is essentially a Strouhal
number based on u0 rather than c0.

4.1. Arterial Network

A simpli�ed arterial network containing the 55 largest arteries in the
human body was proposed and modelled using electrical circuits by
Westerhof in reference [26]. This reference provides physiological data
for diameters, wall thickness, length and elastic moduli for each of the
55 arteries. Terminal resistances for the model have been calculated
in Stergiopulous & Young [20] using the method described in section
2.2.4. Wang and Parker [25] found that some of the bifurcations were
ill-matched for forward travelling waves and the re
ections that they
generated obscured the re
ections from the terminal segments and
adjusted the diameters of the 55 arteries to give well-matched linear
forward travelling waves, i.e. waves that produce small re
ections at
the bifurcations. The bifurcations are, however, not well-matched for
backward travelling waves.

We have adopted the modi�cations proposed in Wang & Parker
[25] to the published models [20, 26] to compute the pulsatile one-
dimensional blood 
ow through the arterial system using the discontin-
uous Galerkin method. Figure 5 shows the connectivity of the arteries
used in our model of the arterial network. The normalised geometry
of the network and the reduced wave speed for each vessel, cired =
1=Sti = ci0T=d0 where c

i
0 is the linearised wave speed in the ith vessel,

are included in table I.
The 
ow in the model arterial system is assumed initially to be at

rest. A periodic half sine wave is then imposed at the ascending aorta
through the forward characteristic, W1. The values for the non-linear
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Figure 5. Connectivity of the 55 main arteries in the human arterial system.

and linearised model

W1 = u0 + 4cd W 0
1 = u0 +

c01
A1
0

ad

where over each time period of length T

u0 = 0;
Ad(t)

A1
0

=

�
1 + � sin(�t=0:3) t < 0:3T
1 0:3 < t < T

cd(t) =

s
�

2�
A
1=4
d and ad(t) = Ad(t)�A1

0:

where � = 0:578 and was chosen to achieve a pressure di�erence of
5500Pa over the incoming wave of a physical ascending aorta. This in-

ow treats the aortic valve as an absorber throughout the cardiac cycle.
For all computations, second order time integration with a time step
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Table I. Area Ai
0, vessel length li and reduced wave speed ci0T=d1 for well matched

computational model normalised by the time period T , the Aortic area A1

0 = �d21=4
and the diameter of vessel 1, d1. This table combines the physiological data published
in [20, 25, 26]. Note the absence of vessel 30 to be consistent with [25].

No. Ai
0=A1 li=d1 cired Rt No. Ai

0=A1 li=d1 cired Rt

1 1.0000 1.361 158.52 - 28 0.3917 1.803 148.89 -

2 0.7382 0.680 150.36 - 29 0.1600 0.680 157.06 -

3 0.2261 1.156 161.05 - 31 0.0971 2.245 155.71 0.925

4 0.1354 1.156 167.53 - 32 0.0651 2.415 164.91 0.921

5 0.1035 6.020 173.74 - 33 0.0690 2.143 178.06 0.93

6 0.0267 5.034 291.52 0.906 34 0.1152 2.007 177.02 0.934

7 0.1227 14.354 171.71 - 35 0.3289 0.340 146.65 -

8 0.0623 7.993 230.45 0.82 36 0.0567 1.077 185.25 -

9 0.0954 2.279 214.30 - 37 0.2918 0.340 151.11 -

10 0.0174 2.687 361.71 0.956 38 0.0567 1.188 185.25 0.861

11 0.0868 5.816 219.43 0.893 39 0.2046 3.605 159.87 -

12 0.0675 5.986 231.07 0.784 40 0.0174 1.701 224.12 0.918

13 0.0675 6.020 223.23 0.79 41 0.1843 0.340 152.79 -

14 0.6608 1.327 147.68 - 42 0.1022 2.007 170.09 -

15 0.0789 7.075 185.93 - 43 0.1022 1.973 170.09 -

16 0.0516 5.986 247.12 0.784 44 0.1075 4.898 223.25 -

17 0.0516 6.020 238.74 0.791 45 0.0419 1.701 347.08 0.925

18 0.5805 1.769 149.19 - 46 0.0603 15.068 250.55 -

19 0.1040 1.156 177.64 - 47 0.0586 4.286 244.62 0.885

20 0.0191 5.034 316.98 0.906 48 0.0654 10.918 329.38 0.724

21 0.0958 14.354 182.68 - 49 0.0181 11.667 422.55 0.716

22 0.0486 7.993 245.26 0.821 50 0.1075 4.932 223.25 -

23 0.0744 2.279 228.02 - 51 0.0419 1.701 347.08 0.925

24 0.0137 2.687 384.15 0.956 52 0.0603 15.102 250.55 -

25 0.0679 5.816 233.32 0.893 53 0.0586 4.320 244.62 0.888

26 0.0465 2.721 187.16 0.627 54 0.0651 10.952 329.82 0.724

27 0.5308 3.537 145.46 - 55 0.0180 11.701 423.62 0.716

of �t=T = 10�5 and spatial discretisation into elements of polynomial
order P = 8 were used. The boundary condition at the terminal vessels
were imposed through a terminal resistance (see section 2.2.4) which
was either prescribed to be zero (no terminal resistance) or as given in
table I.
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Figure 6. Linear (solid) and non-linear (dashed) pressure and velocity histories in
the anterior tibial (artery 55) of the idealised model normalised by the peak value
in vessel 1. No terminal resistance is applied in this model.

To illustrate the di�erences in the solutions calculated using the
linear and non-linear analysis, �gure 6 shows the time histories of pres-
sure, p, and velocity, u, at the lower end of the network (anterior tibial
artery 55). No terminal resistance has been applied to the terminal
vessels and the outgoing waves are therefore completely absorbed: no
wave is re
ected back into the system. The linear and non-linear results
are plotted on the same �gure. The linear solution is represented by the
solid line and the non-linear solution is the dashed line. The bifurcations
are well-matched for the linear system and there are no re
ection sites
within the network. Consequently the linear solution is the same shape
as the input wave. We do note slight oscillations at the start of the
wave t=T = 0:2 which are due to numerical oscillations associated with
the discontinuous nature of the derivative of the input wave in time
and space. The non-linear solution shows a small 
ow reversal and
decrease in pressure at the tail of the input wave when t=T = 0:5. This
is due to the arteries only being well matched for the linear but not
for the non-linear theory which results in a small amount of re
ection
and re-re
ections. The non-linear solution of p and u show that the
input wave becomes skewed as the wave travels through the system. In
both systems the magnitude of p remains relatively constant whilst the
magnitude of u decreases.

The skewing of the non-linear wave is due to non-linearities intro-
duced both in terms of the area dependent relationship of the wave
speed c and the convective non-linearity. For a forward travelling wave
the velocity and pressure variations have the same sign as shown in �g-
ure 6. The wave speed and convevtive non-linearities have a similar sign
contribution which moves the non-linear wave forward more rapidly
than the linear wave. This motion causes the pressure and velocity
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peak to catch up with the start of the wave. Finally we note that there
is a lag of the wave in time of approximately t=T = 0:2 for the input
wave to reach the terminal vessels.
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Figure 7. Linear (solid) and non-linear (dashed) pressure and velocity histories in
the ascending aorta (artery 1) of the idealised model normalised by the peak value
in vessel 1. Terminal resistance is applied in this calculation according to table I.

Figure 7 shows a comparison of the waveforms in the ascending
aorta (artery 1) calculated using the linear and non-linear models.
Terminal resistances have been applied in this calculation as given in
table I. The time u and p history plots are shown for the �fth cycle.
The overall shape and magnitudes of the wave are similar for both
solution methods with a slight increase in the peak pressure and a
corresponding decrease in the velocity waveform. In both models the
velocity peak preceeds the time of the pressure peak. This is consistent
with the initial contribution of the re
ected waves having an additive
e�ect to pressure and a subtractive e�ect on velocity. This property
can be associated with the changes in perturbation over a backward
W2 wave, i.e.

�u+
c0
A0

�a = 0:

At approximately t=T = 4:3 we observe a feature similar to the
dichrotic notch in the pressure waveform which is associated with the
closure of the aortic valve in-vivo. Although the action of the aortic
valve is not included in this model directly the discontinuity of the
imposed input velocity at t=T = 0 and 0:3 can be thought of as a
function of the valve. Since we have treated the in
ow as an absorber,
the re
ected waves are not re
ected back into the system. We also note
another peak in the descending part of the pressure wave which is not
normally observed in the ascending aorta waveform but has been seen
in waveforms further down the aorta. Uniformly increasing the wave
speed of the system to

p
1:5ci0 removes this feature.
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Figure 8. Linear pressure and velocity histories in; the ascending aorta (artery 1)
shown by the solid line; the thoracic aorta I (artery 18) shown by the dashed line
and the abdominal aorta IV (artery 39) shown by the dotted line. All values are
normalised by the peak values in vessel 1. Terminal resistance is applied in this
calculation according to table I.

Figure 8 shows a comparison of the pressure and velocity waveforms
for arteries 1; 18 and 39 normalised by the peak values of the waveform
in artery 1. From this �gure we observe that the peak pressure increases
as we move down the system, even though the mean pressure is observed
to slowly decrease. This is in agreement with in-vivo data [13].

4.2. Flow reversal in a network

As we have seen in section 4.1 wave re
ections at arterial bifurcations
and the known resistance of the system lead to di�erent 
ow waveforms
at di�erent locations in the network. The shape of the 
ow waveform,
which is measurable in the human arterial system using ultrasound
techniques, is also frequently used as a diagnostic input and so it is
reasonable to ask what factors in
uence waveform patterns such as

ow reversal. To simplify the problem we will consider a model where
the peripheral resistance is low and thereby remove the contribution
of wave re
ections from further down the arterial tree. Physiologically,
this model might be relevant to the relatively low resistance of the
vascular beds such as the cerebral system or the fetal circulation of
the placenta. Therefore, examples of the model con�guration might be
considered appropriate to the carotid arteries or the umbilical cords.
Further, as shown in MacDonald [13] the 
ow waveform in the umbilical
cord of a healthy foetus is typically positive throughout the cardiac
cycle. Motivated by the observation that convective non-linearity does
not play a signi�cant role in the wave form patterns, we will use the
linearised model to analyse the system.

paper.tex; 6/12/2002; 17:58; p.28



1D vascular modelling 29

W +   W0
11 δ

W +   W0
11 ∆ W0

2

W0
1u1

u3

W +   W0
22 ∆

W +   W0
22 δ

A

B

x=x0

0 1t=x/c  + C

t 1

t 2
u2

W +   W0
22 δ

W0
2W0

1

W +   W0
11 ∆

t=−x/c  + C
 0  2

t=l/c

t=0 x
x=lx=0

t

x=l

Figure 9. x-t plot of the parent vessel of a bifurcation expressed in terms of the
characteristic variables.

We consider, as shown in �gure 9, a bifurcation where the parent
vessel is of length l and assume that at time t = 0 the solution is at
a constant equilibrium state (�a; �u0). This state corresponds to constant
equilibrium characteristic variables W

0
1;W

0
2 and we recall that for the

linearised system

u0 =
W1 +W2

2
a =

A0

c0

W 0
1 �W 0

2

2
: (59)

Introducing a perturbation to the incoming equilibrium character-

istic W
0
1 at the in
ow to the parent vessel of the form �W1(0; t)

necessarily leads to a change in area and velocity, denoted as (�a;�u),
from the equilibrium values (�a; �u0). Since the propagation velocities
�01; �

0
2 of the characteristic variables W 0

1 and W 0
2 are �01;2 = �c0, the

characteristic variables are constant along the lines t = x0�x
c0

in the x-t
plot as shown in �gure 9.

To derive the velocity time history of a point x0 as indicated by
line (A-B) in �gure 9, we initially assume the boundary x = 0 is
non-re
ecting. There are then three separate solution regimes to be
considered. Initially for 0 � t < t1, where t1 = x0

c0
, the solution is

dictated by the equilibrium characteristicsW
0
1;W

0
2. For the time period

t1 � t < t1+ t2 where t2 = 2 l�x0c0
the solution is dictated by the charac-

teristicsW 0
1 =W

0
1+�W1 andW

0
2. Finally for t > t1+t2 the solution is

dependent on the incoming forward characteristicW 0
1 =W

0
1+�W1 and

the re
ected backward characteristic, W 0
2 = W

0
2 + ÆW2 where ÆW2 is
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the re
ected state after �W1 reaches the bifurcation at x = l. Denoting
the velocity at x = x0 in the three temporal regimes as u1(t); u2(t) and
u3(t) we note from equation (59) that

u(x0; t) =

8>>><
>>>:
u1(t) =

W
0

1
+W

0

2

2
t < t1

u2(t) =
W

0

1+�W1+W
0

2

2 t1 < t < t1 + t2

u3(t) =
W

0

1+�W1+W
0

2+ÆW2

2 t1 + t2 < t

(60)

where t1 =
x0
c0
; t2 = 2 l�x0c0

.

Since the velocity u1(t) is only determined by the equilibrium values

W
0
1 and W

0
2 we can immediately state that

u1(t) =
W

0
1 +W

0
2

2
= �u0:

To obtain an expression for u2(t) we need to relate the perturbation
�W1(0; t) to a change in velocity �u(0; t). In general a change in the
in
ow conditions can lead to a change in �W1(0; t) and W 0

2 (0; t) such
that

W 0
1 (0; t) = W

0
1 +�W1(0; t)

W 0
2 (0; t) = W

0
2 +�W2(0; t)

where

W
0
1;2 = �u0 � c0

A0
�a (61)

�W1;2 = �u� c0
A0

�a: (62)

For t < 2l
c0

the re
ected wave has not reached the in
ow boundary at

x = 0. Therefore W 0
2 (0; t) must remain constant and

�W2 = 0 ) �u(0; t) =
c0
A0

�a(0; t) 0 � t < 2l
c0
: (63)

To keep the in
ow as an absorbing boundary for t > 2l
c0

requires that

�W2(0; t) = ÆW2(0; t � l
c0
).

Using condition (63) in equation (62) we can relate �W1(0; t) to
�u(0; t) through

�W1(0; t) = 2�u(0; t) 0 � t < 2l
c0
: (64)

Noting that �W1(x0; t) = �W1(0; t� t1) we obtain
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u2(t) =
W

0
1 +�W 0

1 (0; t � t1) +W
0
2

2
= �u0 +�u(0; t� t1)

for t < t1 + t2.
At t = l=c0 the perturbed incoming characteristicW 0

1+�W1 reaches
the bifurcation at x = l and after a linear re
ection we have a new
characteristic state

W 0
1;2(l; t) =W

0
1;2 + ÆW1;2(l; t) where ÆW1;2 = Æu(l; t) � c0

A0
Æa(l; t)

From section 2.2.3 we recall that for a linear re
ection

Æ̂a

�a
= � Æ̂u

�u
= Rf

where
Æa = �a+ Æ̂a and Æu = �u+ Æ̂u

and

ÆW2(l; t) = �u(l; t)� c0
A0

�a(l; t)�Rf

�
�u(l; t) +

c0
A0

�a(l; t)

�
= �W2(l; t)�Rf�W1(l; t): (65)

We have previously seen that �W2(0; t) = 0 for t < t1. It is however
not immediately evident that this condition at x = 0 can be applied
at x = l since the two boundaries are connected by a W1 forward
characteristic. Nevertheless, we recall that the backward characteristic
W2 relates information across the W1 characteristic and this obser-
vation leads to the condition �W2(l; t) = 0. To illustrate this result
we consider the example shown in �gure 10 where we decompose an
incoming wave into incremental piecewise constant components, i.e.

�u(t) =

8><
>:

�u1 t < ��1
�u1 +�u2 ��1 � t � ��2

...
...

:

If we consider the backward characteristic labelled A-B in �gure 10,
the state �a1;�u1 is related to the equilibrium state �a = 0; �u0 = 0
along the backward characteristic through the expression

�u1 � c0
A0

�a1 = 0: (66)
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Figure 10. Decomposition of incoming wave at the bifurcation into incremental
components.

Similarly along the characteristic line marked C-D in �gure 10 we have
that

�u1 +�u2 � c0
A0

(�a1 +�a2) = �u1 � c0
A0

�a1

which implies that

�u2 � c0
A0

�a2 = 0: (67)

An analogous argument indicates that conditions (66) and (67) also
hold after the re
ection. From this we deduce that �W2(l; t) = 0 for
all time, and equation (65) becomes

ÆW2(l; t) = �Rf�W1(l; t): (68)

Finally since u3(t) is determined by the forward characteristic W
0
1 +

�W1(0; t) and backward characteristic, W
0
2 + ÆW2(l; t) then applying

equations (68) we obtain

u3(t) = �u0 +�u(0; t� t1)�Rf�u(0; t� t2) (69)

where

ÆW2(x0; t) = ÆW2(l; t� l�x0
c0

) = �RfW1(0; t� t2):

and we have assumed that �W1(0; t) obeys relation (64) for all time.
The evaluation of u(0; t) from equation (60) only equals �u(0; t) for t <
2l
c0

since the re
ection wave will reach the absorbing in
ow boundary
after this time.
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In summary, for an incoming wave de�ned by �W1(0; t) = 2�u(0; t),
the velocity history at point x = x0 is

u(x0; t) =

8>><
>>:

�u0 t < t1
�u0 +�u(0; t� t1) t1 < t < t1 + t2
�u0 +�u(0; t� t1)

�Rf�u(0; t� t1 � t2) t1 + t2 < t

: (70)

If x = 0 is taken to be a non-re
ecting boundary, we should expect
an in�nite series of re
ected waves from the junctions at both ends of
the vessel. The initial solution will be identical to equation (70) up to
the time t < 3t1 + t2 after which time the incoming wave has re
ected
from both the ends of the vessel and return to point x = x0. Realising
that an analogous re
ection occurs as a backward W2 characteristic
meets the left boundary (i.e. ÆW1 = �Rl

f�W2), we can de�ne the
velocity time history at x = x0 in a vessel between two bifurcations as

u(x0; t) = �u(0; t� t1)�Rr
f�u(0; t� t1 � t2)

+
1X
n=1

(Rl
f )

n(Rr
f )

n �u(0; t� (2n+ 1)t1 � nt2) (71)

�
1X
n=1

(Rl
f )

n(Rr
f )

n+1 �u(0; t� (2n+ 1)t1 � (n+ 1)t2)

where Rl
f and Rr

f are the re
ections from the left and right boundaries
respectively and �u(0; �) = 0 for � < 0.

4.2.1. Results

An initial observation from equations (70) and (71) is that if Rl
f ; R

r
f <

0 then (Rl
f )

n(Rr
f )

n and �(Rl
f )

n(Rr
f )

n+1 are both positive. Therefore,

provided that �u(0; t) and �u0 are both positive, the velocity history at
any point in the vessel will remain positive. In stating this result we
have also assumed that there are no signi�cant re
ected waves from
other vessels which is true when the terminal resistance is small. The
condition Rf < 0 requires that

A1
0

c10
<
A2
0

c30
+
A2
0

c30

where the superscripts refer to the parent (`1'), and daughter vessels
(`2' and `3') as introduced in section 2.2.3.

As previously mentioned, a physiological example of vessels perfus-
ing a bed of relatively low terminal resistance are the umbilical arteries
where, for a healthy foetus, the 
ow waveform is strictly positive.
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Figure 11. Linearised re
ection from a single bifurcation. a) Model con�guration.
b) velocity and area history at the centre of the parent vessel. c) velocity and area
time history at the beginning, middle and end of the parent vessel. d) velocity and
area time history at the centre of the parent vessel when wave speed is doubled.
(Dashed lines represent the exact answer)

From anatomical measurement of placenta casts, we have calculated
re
ection coeÆcient at the downstream end of two umbilical arteries
of Rr

f = �0:5 and Rr
f = �0:4 (based upon area measurements and

assuming constant wave speed). In a normal arterial bifurcation the
upstream re
ection coeÆcient is typically also negative since, physiolog-
ically, forward travelling waves are well matched. Assuming this at the
upstream bifurcation to the umbilical arteries leads to the prediction
of a positive 
ow waveform by the above analysis. Under abnormal
conditions where the terminal resistance is increased, the possibility of
negative waves entering from a terminal re
ection is introduced. This
is consistent with the medical practise of using a 
ow reversal as a
diagnostic indicator.
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When Rf > 0 the velocity contribution from the re
ected wave at
the bifurcation is negative and so some period of reversed 
ow can
exist in our simpli�ed model. This is illustrated in �gure 11 where
we show a single bifurcation model. In this model we consider three
vessels where each vessel is 20D long where D is the diameter of the
parent vessel. The reduced wave speed cred = Tc0=D of a vessel with
a diameter of D = 2:5cm, a time period T = 1sec and a wave speed
of c0 = 3m=s is cred = 120. To match these conditions in our example
we keep T = 1 and set the model wave speed to be cmodel

0 = 120
in all vessels. Considering a peak physiological in
ow to be 25cm=s
implies that the Mach number is M = u=c0 = 1=12. Matching this
Mach number in our model therefore requires a peak input velocity of
u = Mcmodel

0 = 10. Finally to generate a linear re
ection of Rl
f = 0:5

we specify that the daughter vessels have a diameter of D=
p
6. The

input for this problem was prescribed to be

�W1(0; t) = 2�u(0; t) = 20 sin2(3�t)H(t� 1=3) (72)

where H(�) is the Heaviside step function. The in
ow boundary im-
poses a positive sinusoidal velocity in
ow over a third of the character-
istic period and all backwards waves are completely absorbed.

Figure 11 shows the time history of the velocity and area normalised
by the peak velocity and equilibrium area in the parent vessel. Also
indicated by the dashed line in �gure 11(c) is the analytic solution due
to the single re
ection at the bifurcation. As can be seen in this �gure
and previously shown by equation (70) the solution is simply comprised
of the incoming wave and a time shifted re
ected wave. The positive
re
ection coeÆcient means that the sign of the velocity perturbation
due to the re
ected wave is the opposite of the incoming velocity. Due
to the phase shift the summation of the two waves causes a 
ow reversal
the temporal extent of which is of the order O(t2) where we recall that
t2 = 2(l � x0)=c0.

This point is further highlighted in �gure 11(c) where we show the
time history at the beginning (in
ow), middle and end (bifurcation)
of the parent vessel. The �rst wave form corresponds to the history
point at the in
ow of the vessel. Since at this point x0 = 0 and t2 is
maximal, there is a signi�cant phase shift between the incoming and
re
ected waves. The dimensions of the problem are such that at x0 = 0
t2 = 2 � 20=120 = 1=3 which is exactly the time period of the input
pulse and so we observe two distinct waves. Considering the history
point at the bifurcation, i.e. x0 = 20D, we observe an opposite e�ect:
there is no phase shift and the velocity pro�les therefore cancel leading
to a single velocity peak of magnitude u=umax = 0:5. This interaction
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Figure 12. Linearised re
ection of a vessel between two bifurcations
(Rl

f = �0:5; Rr
f = 0:5) a) Model con�guration. b) comparison of linear

(solid) and non-linear (dashed) velocity history. c) velocity and area time history
in the middle of vessel 2 using a wave speed of c0 (solid) and 2c0 (dashed). d)
comparison of linear (solid) and non-linear (dashed) area time history. All time
histories are evaluated at the centre of vessel 2.

also has an additive e�ect on the area variation causing a maximal
de
ection.

Figure 11(d) shows the same example considered in �gure 11(b)
but where the wave speed has been doubled. This has the e�ect of
halving both t1 (the time for the wave to reach x0) and t2 although the
in
ow wave pulse still has a non-zero contribution for a time of T=3.
As indicated by the dashed lines there is a more signi�cant overlap
between the incoming and re
ected wave. This larger overlap leads to
a reduction in the velocity peak and the extent of the 
ow reversal
regime. A reduction in 
ow reversal has been observed in-vivo in [2]
where an increase in wave speed was induced through an association of
smoking with arterial sti�ness.
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To complete our wave form analysis we consider a two bifurcation
model as shown in �gure 12 (a). In this problem the bottom three
vessels are identical to the previous case shown in �gure 11. The two
additional upstream vessels are con�gured so that the upstream bifur-
cation of vessel 2 has a re
ection coeÆcient of Rl

f = �0:5. This can
be achieved by using the same wave speed c0 in all vessels, making the
daughter vessels of the same diameter and setting the parent vessel
diameter to

p
2D. Figures 12(b) and (d) show the velocity history

evaluated at the centre of vessel 2 over two time periods using the
input wave (72). The solid line represents the linear model which is
indistinguishable from the solution given by equation (71) evaluated
with n = 50 terms. Also indicated in this plot is the non-linear so-
lution shown as a dashed line. As observed previously, the non-linear
solution is not signi�cantly di�erent from the linear solution. The most
signi�cant di�erences are due to the di�erent phase properties of the
non-linear solution. Finally in �gure 12(c) we compare the linear model
using a wave speed of c0, as indicated by the solid lines, compared to
a wave speed of 2c0 as indicated by the dashed lines. Once again we
observe the greater wave cancellation for the case with a higher wave
speed and the faster decay associated with faster wave re
ections.
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