Notes on Matrices 1
MSc: Introductory Mathematics

Matrices

A matrix is an ordered collection of numbers. For example

3 1

4 -1 0 I
M=|2 2 —2|p=(221)x=|um _| =20
46 8 4 7
5 -3 1 o3 I

The size of the matrix is the number of rows X number of rows. Here, M is a 3 X 3 matrix,
P is a 2 x 3 matrix, x is a 3 X 1 matrix (which is more commonly called a column vector)
and C is a 4 X 2 matrix.

A square matrix is a matrix with the same number of rows and columns.

For the following discussion it is convenient to define two general 3 x 3 matrices

11 Az G13 bii b2 bis
A= Go1 Qg2 G23 B = bo1 ba  bos
31 az2 G33 bs1 b3z bss

The extension to the discussion to different sized matrices should be obvious.

A common notation for matrices is the subscript notation. For example
A= Q4

where % refers to the row and j refers to the column.

1 Addition

In order for matrices to be added, they must be of the same size. For example, A and B
can be added

a1+ b1 ag+bie as+ bis
A+B=| ao +ba a0 +byn a3+ b
asy +bs1  asy +bse ass + bsz
In subscript notation, this would be written

A+B=aij+bij

Addition is commutative, ie. A + B =B + A.
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2 Multiplication

The product of two 3 X 3 matrices is defined as

a11b11 + a12ba1 + a13bs1  @11b12 4+ a12b22 + a13bse  a11b13 + a12ba3 + a13bs3
AB = | ag1bi1 + ag2bo1 + a23bs1  ao1b12 + agebos + agsbse  a21b13 + a22b23 + Go3bss
as1bii + asebor + assbsr  as1bio + asaboe + assbsa  asibiz + asebos + assbss

The 5% element is equal to Zzzlaikbkj. In the subscript notation for matrices, the
summation convention is often used. This states that if a subscript letter is repeated then
it should be summed over that index. Thus, for two 3 x 3 matrices

AB = a;;by;
is a very concise way to write matrix multiplication since, by the summation convention
aixbr; = a; by + by + aisbs;
From the definition of multiplication, it is clear that it is necessary for the number of
columns of the left matrix to be equal to the number of rows of the right matrix. For

example, a 2 X 3 matrix can be multiplied by a 3 X 4 matrix giving a 2 X 4 matrix, but a
3 X 4 matrix cannot be multiplied by a 2 X 3 matrix.

Note that multiplication is not commutative,
AB # BA

Multiplication of more than two square matrices is associative. For example,
(AB)A = A(BA)

Multiplying a square matrix by a column vector yields a column vector. For example, for
A and x defined above

01121 + G122 + A13T3
Ax = | anxi + agx2 + agsxs
(3171 + A32T2 + A33T3
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3 Transpose
The transpose of a matrix, A = q;; is defined as AT = a;;. That is

11 Ag21 as:
T
A" = 12 QAg22 a31

13 G923 A33

Note that (AT)T = A.

The transpose of an n X m matrix will be an m X n matrix. For example
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4 Diagonal Matrices

A diagonal matrix is a square matrix that has non-zero elements only along the diagonal,
a;; = 0if 4 # j. If A is a diagonal matrix, then

a1 0 0
A= 0 (157 0
0 0 ass3

Note that a 3 x 3 diagonal matrix has 3 independent elements.

5 Unit Matrix

The unit matrix is a diagonal matrix with 1’s along the diagonal. The 3x3 unit matrix is

Note that AT = A and so the unit matrix has a similar role in linear algebra to 1 in
algebra. Since we also have IA = A, multiplication by the unit matrix is commutative.
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6 Symmetrical Matrices

A matrix is symmetrical if a;; = a;;. If A is symmetrical, then

11 Az G13
A= G12 Qg2 (23
13 Q93 A3z

Note that a symmetrical 3 X 3 matrix has 6 independent elements.

7 Skew Symmetrical Matrices

A matrix is skew symmetrical if a;; = —a;;. If A is skew symmetrical, then

11 G2 13
A= —Q12 Qg2 Q421
—Q13 —0a91 A3z

Note that a skew symmetrical 3 x 3 matrix also has 6 independent elements.

8 Inverse

The inverse of a square matrix satisfies the relationship
AA7' =1

Multiplication by the inverse is commutative, i.e.
AAT'=ATTA =1

The inverse is very important in linear algebra because it can be used to obtain the
solution of the equation

Ax =y

since multiplying both sides of the equation on the left by A~! gives
A'Ax=Ix=x=A"y

Thus if we know A and its inverse A~! and y we can solve for the unknown x by simple

multiplication A~'y. The solution of a set of linear equations therefore reduces to the
problem of finding the inverse of the matrix of coefficients.
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9 Determinant

The determinant is a scalar and is defined only for square matrices. The determinant of
a 2 X 2 matrix is defined as

11 Q12
21 Q22

A=

‘ = A11022 — Q12021

For a 3 x 3 the determinant is

11 Qa2 13

G12 Q13
|A| = Go1 Qg2 Go3 | = 411

(o2 Q23

o2 A23
G32 a3z

31 dz2 G33
= (11022033 + Q12023031 + (13021032 — A11023G32 — A12091G33 — (13022031

The 2 x 2 determinants are called the cofactors and are made up of the elements of the
matrix excluding the column and row of the factors. This allows the determinant to be
defined iteratively, ie. the 4 X 4 determinant can be written in terms of the 3x 3 cofactors,
the 5 x 5 determinant in terms of the 4 x 4 cofactors, and so on.

The determinant is important because it can be shown that if |A| # 0 then there is a
unique solution to the system of equations Ax =y. If |[A| = 0 then there is either no
solution or an infinity of solutions.

10 Methods of Solving Ax =y

10.1 Cramer’s rule

If we think of the matrix A as a row vector of column vectors,

11 Az G13 ay;
A= Qo1 G92 Go3 = (3.13.23.3) where a; = a9;
31 a3z A3z as;

then we can define the determinants
D = |A| = |ajasas|, D =|yaas|, D,=|aiyas|, D3= |aay]

If D # 0, then the solution of the equation is

I = D

To9 = D

IE3—D
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10.2 Gauss elimination

It is probably simplest to demonstrate Gauss elimination using a simple example. Con-
sider the system of equations

2e+y+z = 1
dr 4y = =2
—2r+2y+z2 =7

This can be written as the matrix equation

2 11 z 1
4 10 y | =] -2
—2 2 1 z 7

Use the first equation to eliminate the x term from the second and third equations

2 1 1 z 1
0 -1 -2 y | =] -4
0 3 2 z 8

Use the second equation to eliminate the y term from the third equation

2 1 1 z 1
0 -1 —2 y | =] -2
0 0 —4 z —4

This equation can be solved very straightforwardly. The third equation gives z = 1.
Substituting this into the second equation gives y = 2. Substituting these into the first
equation gives x = —1.

Thus Gauss elimination uses one equation to eliminate one variable from the other equa-
tions. One of these equations is used to eliminate another variable from the rest of the
equations. This is continued until the matrix has a triangular form, which can be solved
by simple back substitution. In the more sophisticated versions of the Gauss elimination
algorithms, the largest element is used for each elimination step. This is called ’pivoting’
and greatly decreases the sensitivity of the method to round off errors.

10.3 LU decomposition

Almost all square matrices can be written as the product A = LU where L is a lower
triangular matrix and U is an upper triangular matrix

Iy 0 0 Uy U2 U3
L= lop log O L = 0w ugs
31 Iz Is3 0 0 uss
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Then the equation Ax =y, can be written
Ax=(LU)=L(Ux)=Lz=y  where Ux=z

Thus the problem reduces to the relatively simple one of solving the two triangular systems
Lz =y and Ux = z.

Again, it is easiest to demonstrate the method on a particular example (the same as that
solved in the previous section). Start with A and the identity matrix I

2 11 1 00
4 10 010
-2 21 0 01

Perform Gauss elimination on the left hand matrix to obtain the U matrix, and put
the multipliers used in the right hand matrix to obtain the L matrix. In this example,
eliminate the 21 element of the left hand matrix by multiplying the first row by 2 and

subtracting it from the second, putting the multiplier in the 21 element of the right hand
matrix

2 1 1 1 00
0 -1 -2 210
-2 2 1 0 01

Eliminate the 31 element of the left hand matrix by multiplying the first row by -1 and
subtracting it from the third row, putting the multiplier in the 31 element of the right
hand matrix

2 1 1 1 00
0 -1 -2 2 10
0 3 2 -1 01

Eliminate the 32 element of the left hand matrix by multiplying the second row by -3 and
subtracting it from the third row, putting the multiplier in the 32 element of the right
hand matrix

2 1 1 1 0 O
U=|0 -1 -2 2 1 0 |=L
0 0 -4 -1 -3 1

Now that we have L and U, we can solve Ax =y for any y. Continuing with the example
from the previous section, solve for
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First solve Lz = y for z, using the triangular form and forward substitution

0 1 1
0 |z=| -2 = z=| —4
1 7 —4

1 0
2 1
-1 -3

Now solve Ux = z for x, again using the triangular form and back substitution

2 1 1 1 -1
0 -1 -2 |x=]| —4 = X = 2
0O 0 -4 —4 1

This is the solution.

10.4 Inverse from LU decomposition

In order to obtain the general solution to Ax =y, it is necessary to find the inverse of A,
A~!, To do this, it is necessary to solve separately for the three unit vectors Ax; = uy,
AX2 = U9, AX3 = Uug where

1 0 0
u = 0 Ug = 1 ug = 0
0 0 1
For uy
2 1 1 1 1
2 1 0 z, = 0 = Z, = -2
-1 -3 1 0 -9
2 1 1 1 1 1
0 -1 -2 X = —2 = X = g —4
0 0 -4 -5 10
For u,
2 1 1 0 0
2 1 0 Zyo = 1 = Zyo = 1
-1 -3 1 0 3
2 1 1 0 1 1
0 -1 -2 Xo = 1 = X9 = g 4
0 0 -4 3 —6
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For us
2 1 1 0 0
2 1 0 Z3 = 0 = Z3 — 0
-1 -3 1 1 1
2 1 1 0 1 -1
0 -1 -2 X3 = 0 = X3 = g 4
0 0 -4 1 -2

Then the inverse A™' = (x; x5 x3). That is
1 1 -1
A= -4 4 4
10 -6 -2

This solution for A~! can be checked by multiplication

f 2 11 1 1 -1
AA™Y = g 4 1 0 —4 4 4
-2 21 10 —6 -2
L 2-4+410 2+4-6 -2+4-2
= 3 4—4 444 444 =1

—-2-8+10 -2+8—-6 2+8-2

11 Eigenvalues and Eigenvectors

The equation Ax =y can be thought of as a linear transformation from x = y. There
are special vectors e, for which the transformed vector is in the same direction as the
original vector. That is,

Ae = )e

where e is called the eigenvector (characteristic vector) and A is called the eigenvalue
(characteristic value). To determine A and e, rewrite the equation

(A—XM)e=0
This equation has a trivial solution e = 0. If the determinant |A — AI # 0 then this

solution is unique. However, if |[A —AI = 0, then the solution is not unique and there can
be other non-trivial solutions. Thus, the eigenvalues are determined from the equation

A — M| =0
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In order to find the eigenvector associated with a give eigenvalue, it is necessary to solve
the equation Ae = Je.

For example, given the matrix

a-(41)

we must solve

/|
P RN
(4—X)(B-X) -2

= M -7A+10
(A=3)(A—2)

Therefore, the eigenvalues for this matrix are Ay = 5 and A\, = 2.

Each eigenvalue will be associated with a different eigenvector. For \; =5
4 1 €11} _ 5 €1,1
2 3 €1,2 N €1,2

de;1+e2 = ey = €1,1 = €12
26171 + 36172 = 56171 = 26171 = 26172

or

Note that the two equations give the same result. This degeneracy is the result of setting
the determinant equal to zero. Thus, the eigenvector associated with the eigenvalue A\; =5

1S
o — 1

where « is any constant. For Ay = 2
4 1 €21 } _ 9 €21
2 3 €2,2 o €2,2

46271 -+ €22 = 262 1 = 262 1= —€22

H H

or

2eg1 +3e22 = 2e9 = 2es1 = —e€32
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Note that the two equations again give the same result. Thus, the eigenvector associated
with the eigenvalue A\, = 2 is

o=r( 1)

where (3 is any constant.

Note that the constants can be chosen so that the eigenvectors are unit vectors (that is,
vectors with unit magnitude). For this example, the unit eigenvectors are

-5(l) =a(l)

12 Singular Value Decomposition

If a matrix is singular, or near singular (ie, A = 0) then the preferred method of solution
is called singular value decomposition. This is based upon the theorem from linear algebra
that any n X m matrix A can be represented as the product of three matrices

A =UwV7T

where U is an n X m matrix, W is an n X n diagonal matrix whose diagonal elements, w;;,
are either positive or zero and are called the singular values and V is an n X n matrix.
Both U and V are orthonormal, which means that

Uv'u=vVT'v =1

This decomposition can be made for any matrix. The singular values are generally ar-
ranged in decreasing order. The corresponding rows of the matrix V can be thought of
as the vectors that define a coordinate system spanning the space defined by A and U is
the transformation of A into the coordinates given by V.

If A is a square matrix, then its inverse can be easily found from the singular value
decomposition

A~ = V(diag(1/w;;))U"

where (diag(1/w;;)) is the diagonal matrix made up of the inverses of the singular values



