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Pascal R. Verdonckd, Kim H. Parkerb, Spencer J. Sherwina,�

aDepartment of Aeronautics, Imperial College London, London, UK
bDepartment of Bioengineering, Imperial College London, London, UK

cSchool of Engineering and Design, Brunel University, Uxbridge, Middlesex, UK
dCardiovascular Mechanics and Biofluid Dynamics (CMBD) Research Unit, Institute of Biomedical Technology, Ghent University, Belgium

Accepted 28 May 2007
Abstract

A numerical model based on the nonlinear, one-dimensional (1-D) equations of pressure and flow wave propagation in conduit arteries

is tested against a well-defined experimental 1:1 replica of the human arterial tree. The tree consists of 37 silicone branches representing

the largest central systemic arteries in the human, including the aorta, carotid arteries and arteries that perfuse the upper and lower limbs

and the main abdominal organs. The set-up is mounted horizontally and connected to a pulsatile pump delivering a periodic output

similar to the aortic flow. Terminal branches end in simple resistance models, consisting of stiff capillary tubes leading to an overflow

reservoir that reflects a constant venous pressure. The parameters required by the numerical algorithm are directly measured in the

in vitro set-up and no data fitting is involved. Comparison of experimental and numerical pressure and flow waveforms shows the ability

of the 1-D time-domain formulation to capture the main features of pulse wave propagation measured throughout the system test. As a

consequence of the simple resistive boundary conditions used to reduce the uncertainty of the parameters involved in the simulation, the

experimental set-up generates waveforms at terminal branches with additional non-physiological oscillations. The frequencies of these

oscillations are well captured by the 1-D model, even though amplitudes are overestimated. Adding energy losses in bifurcations and

including fluid inertia and compliance to the purely resistive terminal models does not reduce the underdamped effect, suggesting that

wall visco-elasticity might play an important role in the experimental results. Nevertheless, average relative root-mean-square errors

between simulations and experimental waveforms are smaller than 4% for pressure and 19% for the flow at all 70 locations studied.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A profound understanding of pressure and flow pulse
wave propagation in the cardiovascular system and of the
impact of disease and anatomical variations on these
propagation patterns can provide valuable information for
clinical diagnosis and treatment (Cruickshank et al., 2002;
Blacher and Safar, 2005; Fujimoto et al., 2004). Computa-
tional arterial models are playing an increasingly significant
role in current vascular research (Taylor and Draney,
e front matter r 2007 Elsevier Ltd. All rights reserved.
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2004). Models can simulate wave propagation in an
accurate, fast and reproducible manner in vessel locations
and under patient conditions that cannot be assessed
in vivo. Through modelling, insight can be obtained into
the relation between healthy or pathological blood pressure
and flow waveforms and various underlying cardiac and
vessel parameters, such as heart rate, cardiac output,
arterial wall geometry, distensibility and peripheral
impedance to the flow. This knowledge then permits the
evaluation of the impact of specific and localised treatment.
Despite growing interest in three-dimensional (3-D)

simulations, a one-dimensional (1-D), time-domain
approach also provides important, although different
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insights into cardiovascular physiology (Wan et al., 2002;
Sherwin et al., 2003a; Franke et al., 2003; Formaggia et al.,
2006; Alastruey et al., 2006, 2007b). Typically, 3-D models
are limited to local areas of the arterial system, mainly
because of their high computational cost, while 1-D models
offer a good compromise between accuracy and cost when a
more global assessment of the system can suffice. In
interventional planning procedures, 3-D models are becom-
ing increasing popular, while 1-D models are better suited for
assessing wave morphology and propagation patterns as an
aid to pharmacological treatment. For the future, the large
range of scales within the cardiovascular system suggests the
use of a multiscale modelling approach involving the
interaction and coupling between 3-D, 1-D and 0-D models,
as has been advocated by Formaggia et al. (2001).

An accurate, quantitative testing of the 1-D formulation
against in vivo data is complicated because some of the elastic
and geometrical properties of the arterial system are very
difficult to measure without highly invasive procedures.
Previous in vivo validations have been presented in Olufsen
et al. (2000) and Steele et al. (2003), but they involved some
parameter fitting (Olufsen et al., 2000) or considered only a
local part of the system (Steele et al., 2003). We have
previously tested the 1-D formulation against measurements
in the aorta of a well-defined 1:1 in vitro model of the large
conduit arteries of the systemic circulation (Segers et al.,
1998) using the linear, frequency-based formulation (Segers
and Verdonck, 2000) and the nonlinear, time-domain
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Fig. 1. (a) Planview schematic of the hydraulic model. 1: Pump (left heart); 2:

tubing (veins); 6: venous overflow; 7: venous return conduit; 8: buffering rese

pump and the aorta.
formulation (Alastruey, 2006). In this work, we test the
nonlinear, time-domain formulation in both aortic and

peripheral locations using a new 1:1 in vitro silicone model
in which all the parameters involved in the simulation can be
accurately measured. The effects on pulse wave propagation
of energy losses at bifurcations and the fluid inertia and wall
compliance of the outflow conditions are also studied.

2. Methodology

From the experimental model we obtain the geometrical
and material properties of the arterial network, the
rheological data of the test fluid and the inflow and
outflow boundary conditions. Pressure and flow measure-
ments are taken at 70 locations along the whole network.
The data obtained just distal to the aortic valve and at the
terminal locations are used as boundary conditions in the
numerical model. The remaining data are treated as
comparative data for the pressure and flow waveforms
simulated with the numerical model.

2.1. Experimental model

2.1.1. Set-up

The experimental model is a 1:1 replica of the 37 largest
conduit arteries of the systemic circulation and mimics
three generations of bifurcating branches (Fig. 1). The
network was manufactured using in-house crafted
6

catheter access; 3: aortic valve; 4: peripheral resistance tube; 5: stiff plastic

rvoir; 9: pulmonary veins. (b) The 37 arteries simulated. (c) Detail of the
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tubular aluminium moulds (CMBD Research Unit, Ghent
University, Belgium), which were either linearly tapered or
had constant cross-section (for the smallest branches).
A two-component silicone material (Baysilone LSR2050,
General Electric, Fairfield, CT, USA) was hand-painted in
six layers on each mould. Curing between subsequent
layers was done at 150 �C. The silicone network was
manually assembled piece by piece, mounted horizontally
and subsequently connected proximally to a Harvard
pulsatile pump providing for a periodic input flow, and
distally to a set of terminal resistance tubes connected to
overflow reservoirs, creating a closed loop hydraulic
system. A 65–35% water–glycerol mixture, with density
r ¼ 1050 kgm�3 and viscosity m ¼ 2:5mPa s at 30 �C, was
used to mimic the density and viscous properties of blood.

2.1.2. Protocol

Values of length, radius and wall thickness were measured
at the inlet, middle point and outlet of each arterial segment
(Fig. 1b) using a ruler, callipers and micrometer. These
measurements were taken at the end of the experiment and
after having dissected the model. The elastic wall properties
were measured by performing a tensile test on 63 silicone
sample strips, taken from specimen sheets of various
thicknesses and angles with respect to the principal direction
of painting the silicone layers. A constant Young’s modulus
of 1.2MPa was measured within the working interval of
pressures of the experiment.

Inflow conditions were imposed by the Harvard pump
with the following settings: 70 beats per minute (with a
systole-to-diastole ratio of 35/65) and a stroke volume of
70ml, creating a mean pressure of approximately
100mmHg at the aortic root. Outflow boundary conditions
were determined by passive resistance elements, made of a
single flexible plastic tube (length 250mm; Ø2mm) and an
overflow reservoir, inducing a back pressure of 3.2mmHg.
Peripheral compliances were not included in this experi-
mental model. The simplicity of this type of outlet allowed
accurate quantification of its parameters, although it
induced some non-physiological features in the pressure
and flow waveforms (see Section 4).

The flow rate was measured using an ultrasonic volume
flow meter (Dual Channel Flowmeter, Transonic Systems
Inc., Ithaca, NY, USA) with five different sized probes
(Transonic Flowprobe Ø24, Ø16, Ø12, Ø8 and Ø3mm).
Pressure was measured simultaneously by means of two
micro-tip catheter pressure transducers (Millar Instru-
ments, Houston, TX, USA). Peripheral recording of the
pressure and flow was always accompanied by a simulta-
neous measurement of the pressure and flow just distal to
the aortic valve. Measurements were taken at 70 sites along
the arterial network, including the six locations in the aorta
originally studied by Segers et al. (1998).

2.1.3. Data acquisition and analysis

At the start of the experiment, pressure sensors were
calibrated against a water column while flow sensors were
tested via comparison with volumetric flow measurements.
Calibration readings were also taken at regular intervals to
allow for thermal drift correction during post-processing.
The signals of the two pressure transducers were connected
to an in-house signal-conditioning unit. The signals of the
dual flow meter were indirectly connected to the same unit,
passing first through the transonic flow meter system. The
amplified signals were sampled at 1000Hz and sent to a
PC via a 12-bit multifunction I/O DAQ card (National
Instruments, Austin, TX, USA). The acquisition software
is an in-house program, written in LabVIEW.
At least 10 successive beats of pressure and the flow were

recorded at each measurement location. The data analysis
was performed, off-line, in Matlab. The signals were first
calibrated and subsequently filtered with a fifth order low-
pass (20Hz) Butterworth filter to reduce noise on the
signals while maintaining the relevant frequency informa-
tion. Subsequently, a minimum of eight beats were selected
from the recorded beats and ensemble averaged to generate
a single beat pressure and flow waveform to be compared
with their numerical counterparts.

2.2. Numerical model

2.2.1. Governing equations

The 1-D governing equations result from conservation of
mass and balance of momentum applied to a 1-D
impermeable and deformable tubular control volume of
incompressible and Newtonian fluid. Following Smith
et al. (2001) and Sherwin et al. (2003b), they take the form

qA

qt
þ

qðAUÞ

qx
¼ 0, (1)

qU

qt
þU

qU

qx
þ

1

r
qp

qx
¼

f

rA
, (2)

where x is the axial coordinate along the vessel, t is time,
Aðx; tÞ is the cross-sectional area of the vessel, Uðx; tÞ is the
average axial velocity of the fluid, pðx; tÞ is the average
internal pressure over the cross-section and f ðx; tÞ is the
friction force per unit length. We consider f ¼ �22mpU ,
which was obtained by fitting experimental data measured
at different points in the cardiac cycle to an axisymmetric
and constant velocity profile that satisfies the no-slip
condition (Smith et al., 2001).
The system of governing equations can be completed

with the pressure–area relation previously used in Olufsen
et al. (2000), Sherwin et al. (2003a, b), Franke et al. (2003),
Alastruey et al. (2006, 2007a, b). It assumes a thin,
homogeneous and elastic arterial wall and it takes the form

p ¼ p0 þ
b

A0
ð
ffiffiffiffi
A
p
�

ffiffiffiffiffiffi
A0

p
Þ; b ¼

ffiffiffi
p
p

hE

ð1� s2Þ
, (3)

where bðxÞ represents the elastic properties of the vessel
wall, which depend on the sectional area, A0ðxÞ, and wall
thickness, hðxÞ, at the reference state ðp;UÞ ¼ ðp0; 0Þ, the
Young’s modulus, EðxÞ, and the Poisson’s ratio, s, taken to
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be s ¼ 1
2
as the wall is assumed to be incompressible.

Although Eq. (3) considers a non-physiological linear
relation between changes in pressure and changes in cross-
sectional radius, it approximates the distensibility of the
silicone wall for the range of working pressures, according
to the tensile tests described in Section 2.1.2. The
parameter b is related to the speed of pulse wave
propagation, cðx; tÞ, through (Sherwin et al., 2003b)

c2 ¼
b

2rA0
A1=2. (4)

2.2.2. Numerical scheme

The solutions of Eqs. (1)–(3) are pressure and flow waves
that are reflected at the junctions and terminal resistances
and due to the effect of tapering. Therefore, it is important
that the numerical method can propagate waves of
different frequencies without suffering from excessive
Table 1

Data of the 37 silicone tubes shown in Fig. 1b

Arterial segment l (mm)�2.0% Rin ! Rout (mm)�3.5

(1) Ascending aorta 36 14:40! 13:00
(2) Innominate 28 11:00! 7:29
(3) R. carotid 145 5:37! 3:86
(4) R. subclavian I 218 4:36! 3:34
(5) R. subclavian II 165 3:34! 2:78
(6) R. radial 235 2.07

(7) R. ulnar 177 2.10

(8) Aortic arch I 21 13:00! 12:50
(9) L. carotid 178 5:58! 3:73
(10) Aortic arch II 29 12:50! 11:80
(11) L. subclavian I 227 4:42! 3:39
(12) L. subclavian II 175 3:39! 2:84
(13)L. radial 245 2.07

(14) L. ulnar 191 2.07

(15) Thoracic aorta I 56 11:80! 11:00
(16) Intercostals 195 4:12! 3:22
(17) Thoracic aorta II 72 11:00! 9:26
(18) Celiac I 38 3.97

(19) Celiac II 13 4.31

(20) Splenic 191 1.83

(21) Gastric 198 1.92

(22) Hepatic 186 3:31! 2:89
(23) Abdominal aorta I 62 9:26! 8:01
(24) L. renal 120 2.59

(25) Abdominal aorta II 7 7.90

(26) R. renal 118 2.55

(27) Abdominal aorta III 104 7:80! 5:88
(28) R. iliac-femoral I 205 3:90! 3:38
(29) R. iliac-femoral II 216 3:38! 2:31
(30) R. iliac-femoral III 206 2:31! 2:10
(31) L. iliac-femoral I 201 4:02! 3:34
(32) L. iliac-femoral II 195 3:34! 2:26
(33) L. iliac-femoral III 207 2:26! 2:12
(34) R. anterior tibial 163 1.55

(35) R. posterior tibial 151 1.53

(36) L. posterior tibial 149 1.58

(37) L. anterior tibial 126 1.55

l: length; Rin ! Rout: diastolic cross-sectional radii at the inlet and the outlet; h

Rp: peripheral resistance. Single numbers indicate vessels with a constant cro

indicated in the heading.
dispersion and diffusion errors. This can be achieved with
a spectral/hp discontinuous Galerkin scheme that involves
the solution of Riemann problems at the interfaces within
each artery, at the boundaries and at the junctions.
A second-order Adams–Bashforth scheme is used for the
time-integration. Details on this algorithm can be found in
Karniadakis and Sherwin (2003), Sherwin et al. (2003b)
and Alastruey (2006).
Table 1 shows the data used in the 1-D simulation, which

were directly measured from the experimental set-up (see
Sections 2.1.2 and 4.1). Wave speed values are calculated
using Eq. (4) with the Young’s modulus obtained from a
tensile test. We initially assume Aðx; 0Þ ¼ A0ðxÞ and
Uðx; 0Þ ¼ 0 in all the silicone tubes, and run the model
until it converges to a periodic solution. This takes about
10 cardiac cycles and of the order of 5min to run on a
standard PC.
% h (mm)�2.5% cin ! cout (m/s) Rp ð10
9 Pa sm�3Þ

0.51 5:21! 5:49 –

0.35 4:89! 6:01 –

0.28 6:35! 7:49 2.67

0.27 6:87! 7:84 –

0.16 6:00! 6:58 –

0.15 7.43 3.92

0.21 8.81 3.24

0.50 5:41! 5:52 –

0.31 6:55! 8:00 3.11

0.41 4:98! 5:12 –

0.22 6:21! 7:10 –

0.17 6:26! 6:84 –

0.21 8.84 3.74

0.16 7.77 3.77

0.43 5:29! 5:48 –

0.27 7:07! 7:99 2.59

0.34 4:84! 5:26 –

0.20 6.20 –

1.25 14.90 –

0.13 7.24 3.54

0.11 6.73 4.24

0.21 6:95! 7:44 3.75

0.33 5:19! 5:59 –

0.19 7.39 3.46

0.35 5.83 –

0.16 6.95 3.45

0.30 5:41! 6:24 –

0.21 6:47! 6:94 –

0.15 5:89! 7:13 –

0.20 8:04! 8:44 –

0.20 6:19! 6:79 –

0.16 6:11! 7:44 –

0.13 6:67! 6:89 –

0.15 8.47 5.16

0.12 7.73 5.65

0.11 7.23 4.59

0.10 7.01 3.16

: average wall thickness; cin ! cout: wave speed at the inlet and the outlet;

ss-section. The interval of confidence of the geometrical measurements is
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Fig. 2. The experimental flow rate measured at the ascending aorta is

enforced as the inflow boundary condition of the simulations.
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2.2.3. Treatment of boundary conditions and bifurcations

The hyperbolic system of partial differential equations
(1) and (2) with the pressure–area relationship (3) is solved
in each silicone tube of Fig. 1b using the following
boundary conditions. At the inlet of the ascending aorta,
the flow measured in the experiment and ensemble
averaged (Fig. 2) is enforced as a periodic inflow boundary
condition. The plastic tube attached to the outlet of each
terminal branch and the overflow reservoir at constant
height are simulated as outflow boundary conditions by
enforcing the relation

Q1D ¼
p1D � pout

Rp
, (5)

where Q1D and p1D are the flow rate and pressure at the
outlet of the 1-D terminal branch, pout ¼ 3:2 mmHg is
the constant hydrostatic pressure measured at the over-
flow reservoir and Rp is the peripheral resistance to the
flow, determined from mean pressure and flow measure-
ments close to the outlet of each terminal branch.
The values of Rp are shown in the last column of
Table 1. Combined, they yield a total peripheral resistance
of 2:25� 108 Pa sm�3. Applying Eq. (5) with Q1D and p1D

as the mean experimental flow rate and pressure measured
at the inlet of the ascending aorta produces a larger total
resistance (2:37� 108 Pa sm�3), since it consists of the total
peripheral resistance plus the effect of viscous dissipation
throughout the vessels and junctions of the system within
the 37 arterial segments.

Boundary conditions of the arterial segments joining at
junctions are prescribed by enforcing conservation of mass
and continuity of the total pressure pþ 1

2
rU2 (the effect of

energy losses is analysed in Section 3.2). A more detailed
description of the treatment of boundary conditions and
junctions can be found in Sherwin et al. (2003b) and
Alastruey (2006).
3. Results

Section 3.1 compares the experimental pressure and flow
waveforms with the numerical predictions obtained using
the geometry, elasticity and boundary conditions measured
in the silicone network. It is important to stress that none
of the parameters involved in the simulation have been
tuned, except for phase matching the onset of the
experimental and numerical systolic ejections during data
post-processing. We also analyse the effect on pulse
waveforms of simulating energy losses at bifurcations
(Section 3.2) and the fluid inertia and wall compliance of
the peripheral plastic tubes (Section 3.3), with particular
emphasis on the peripheral vessels.

3.1. Comparison between experimental and numerical

results

Fig. 3 compares experimental and numerical pressure
and flow waveforms at three representative locations along
the silicone aorta, showing the ability of the 1-D
formulation to capture the main features of aortic pulse
wave propagation. Despite the simple terminal boundary
conditions used, the experimental model is able to
reproduce the main features of pressure and the flow
observed in vivo, such as the dicrotic notch, diastolic decay
and peaking and steepening of pulse pressure as we move
away from the heart (Caro et al., 1978). We also observe
the presence of some backward flow after the closure of the
two-leaflet aortic valve, and a reduction in the amplitude of
the flow with the distance from the heart. The good match
observed at the aortic tubes highlights the relative
independence of the pulse waveform from the terminal
boundary conditions, which was to be expected from our
network since the junctions are well-matched for forward
waves.
Typical comparisons between experimental and numer-

ical results in the rest of the vessels of the system are shown
in Figs. 4–6. Each figure compares experimental and
numerical results in representative vessels of each genera-
tion of bifurcations, going from vessels branching off the
experimental aorta (Fig. 4) to vessels of the third
generation of bifurcations (Fig. 6). We observe that the
1-D formulation is able to predict the essential character-
istics of the in vitro pressure and flow waveforms in the rest
of the vessels simulated. Due to the simple resistance
boundary conditions used in the experiment, the measured
pulse waves become less physiological in the more distal
vessels. They contain many non-physiological oscillations,
in both pressure and the flow, whose frequency is
surprisingly well captured by the 1-D model. However,
the amplitude of the numerical oscillations is higher than
the amplitude of their experimental counterparts. We note
that peripheral reflected waves do not have a significant
effect on the aortic flows, because they get ‘trapped’, on
their way to the aorta, at the junctions of our network,
which are not well-matched for backward travelling waves.
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Fig. 3. Experimental and theoretical pressure (left) and flow (a,b) waveforms: (top) aortic arch II (segment 10 in Table 1), (c,d) thoracic aorta II (segment

17) and (e,f) abdominal aorta III (segment 27). The figures also show the standard deviation (thin solid lines) of the ensemble averaged of each

experimental measurement.
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To study the accuracy of the numerical predictions, a
root-mean-square error defined as E ¼

P ffiffiffiffiffiffi
X2
p

=N, is
calculated in each measuring location. The sum is over
the cardiac cycle, XðtÞ is the difference between experi-
mental and numerical instantaneous pressures or flow
samples, and N is the number of samples. Discrepancies
between the experimental and numerical mean pressure or
flow values are also determined for each measuring
location. Table 2 shows the average value of these errors
(expressed relative to the local maximum of the experi-
mental pressure or flow values) at all of the measurement
sites along the aorta and in the vessels of the first, second
and third generation of bifurcations. Average relative
errors between simulations and experimental waveforms
are smaller than 4% for pressure and 19% for the flow at
all 70 locations studied. The larger relative errors of flow
predictions compared to pressure predictions are consistent
with the larger uncertainty in the experimental flow
measurements compared to the experimental pressure
measurements (see the standard deviations in Figs. 3–6).
If the convective term is neglected from Eq. (2) and
Eq. (3) is linearised as p ¼ ðb=2A

3=2
0 ÞðA� A0Þ, the simu-

lated pulse pressures are larger, because the arterial
network is less compliant (Fig. 7). Moreover, the linear
formulation is worse at capturing the phase of the reflected
waves from the experiment. However, average relative
errors between simulations and experimental waveforms
are still smaller than 4% for pressure and 19% for the flow
at all 70 locations studied, which suggests that the effect of
nonlinearities on waveforms is only secondary under the
conditions of the experiment. This is in agreement with our
previous result in Sherwin et al. (2003b).

3.2. Effect of energy losses at bifurcations on the simulation

Energy losses at bifurcations can be modelled by adding
a loss coefficient into the continuity of the total pressure
pþ 1

2
rU2. The value of the loss coefficient at each

bifurcation is determined using the semi-empirical model
proposed by Gardel (1957a, b), which takes into account
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Fig. 4. Experimental and theoretical pressure (left) and flow (right) waveforms in typical first generation vessels: (a,b) left subclavian I (segment 11), (c,d)

right iliac-femoral II (segment 29). The figures also show the standard deviation (thin solid lines) of the ensemble averaged of each experimental

measurement.

Fig. 5. Experimental and theoretical pressure (left) and flow (right) waveforms in typical second generation vessels: (a,b) left ulnar (segment 14), (c,d) right

anterior tibial (segment 34). The figures also show the standard deviation (thin solid lines) of the ensemble averaged of each experimental measurement.
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the branching angles and the flow and area ratios of the
vessels joining at the bifurcation. Although this method
assumes rigid vessel walls, to our knowledge it is the best
approximation to determine energy losses in 1-D pulsatile
flows. Steele et al. (2003) have also applied this model to
simulate pulse wave propagation in a porcine arterial
bypass.
The addition of these loss coefficients in our simulations

does not have a significant effect on pressure and flow
waveforms. Differences between a model with and without
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Fig. 6. Experimental and theoretical pressure (left) and flow (right) waveforms in typical third generation vessels: (a,b) right ulnar (segment 7), (c,d)

splenic (segment 20). The figures also show the standard deviation (thin solid lines) of the ensemble averaged of each experimental measurement.

Table 2

Average relative errors of the numerical pressures and flows in all the

vessels of the aorta and the first, second and third generation of

bifurcations

Measuring location E pressure (%) E flow (%) p (%) Q (%)

Aorta 1.5 13.6 1.2 2.3

First generation 3.4 18.8 2.9 9.7

Second generation 3.4 15.8 2.9 5.9

Third generation 2.2 11.3 1.5 6.8

The second and third columns show the relative root-mean-square errors,

E, as defined in the text, and the last two columns show the relative errors

of the mean pressure, p, and mean flow rates, Q. All errors are expressed

relative to the local maximum of the experimental pressures or flow rates.
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energy losses cannot be noted in the scale of Figs. 3–6. The
main effect is a change in the mean pressures and flows by
less than 0.5%. The mean pressure at the root of the
network is 0.2% larger when energy losses are simulated,
since the same amount of fluid has to be pumped through a
more resistant network. According to these results, we
observe that energy losses at bifurcations have a secondary
effect on blood flow in large arteries, and cannot explain
the higher amplitudes of the numerical oscillations in
peripheral branches.

3.3. Effect of terminal models on the simulation

In the simulations above, the plastic tubes attached to
each terminal silicone branch were modelled as pure
resistors through Eq. (5). In this section we analyse the
effect of fluid inertia and wall compliance in the resistance
tubes on the predictions of the 1-D model. Peripheral fluid
inertia is included in the resistive outflows by coupling an
LR model, consisting of an inductance L and a resistance
Rp, to the outlet of each 1-D terminal branch. This model
(Alastruey, 2006) is governed by

L
dQ1D

dt
þ RpQ1D þ pout � p1D ¼ 0, (6)

with L ¼ rl=A0 (l ¼ 250mm is the length of the plastic
tube and A0 ¼ pmm2 is its cross-sectional area). The effect
of any possible peripheral compliance is simulated by
coupling an RCR model consisting of two resistances, R1

and R2 (R1 þ R2 ¼ Rp), and a compliance, C, in between
them. This model (Alastruey, 2006) is governed by

p1D þ R2C
dp1D

dt
¼ pout þ ðR1 þ R2ÞQ1D þ R1R2C

dQ1D

dt
.

(7)

According to the study in Alastruey et al. (2007a), we
consider R1 ¼ rc0=A0, with c0 ¼ cðA0Þ given by (4), to
allow any incoming wave from the 1-D terminal branch to
reach C and R2 without being reflected by R1. The
compliance C of each RCR model is taken to be
10�11 m3 Pa�1. Eqs. (6) and (7) are solved using a first-
order time discretisation.
Fig. 8 shows the effect of simulating the terminal

boundary conditions with either the LR or RCR models
on the pressure and flow time histories predicted in the
left renal vessel. The addition of the peripheral fluid
inertia increases the amplitude of the pressure and flow
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oscillations, since L adds to Rp a time-varying resistance
whose value depends on the instantaneous outflow. On
the other hand, a simulation using RCR models reduces
the amplitude of the peripheral oscillations by smoothing
the waveforms due to the windkessel effect. However, the
decrease in amplitude is not sufficient to match the
experimental measurements. Similar results are obtained
in other terminal branches.

4. Discussion

We have presented a well-defined experimental 1:1 replica
of the 37 largest systemic arteries in the human to test the
numerical solution of the nonlinear, 1-D equations of
pressure and flow pulse wave propagation. Following our
previous research work in Segers and Verdonck (2000) and
Alastruey (2006), this is the first attempt, to our knowledge,
to test the accuracy of the 1-D formulation in the aorta and
its branches up to the third generation of bifurcations.
Although it is not an in vivo validation, it has the
fundamental advantage of reducing the uncertainty of the
parameters involved in the numerical algorithm. Unlike other
in vivo validations (Olufsen et al., 2000; Steele et al., 2003), we
have been able to directly measure all the parameters
involved in the numerical algorithm. We first present some
issues of the experimental modelling (Section 4.1) after which
we discuss the numerical results (Section 4.2).

4.1. Experimental model

Although the experimental set-up is only an approxima-
tion to the human systemic circulation, it is able to
reproduce pulse waveforms with significant physiological
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features in the aortic vessels. However, waveforms become
less ‘physiological’ as we approach the periphery. This is a
consequence of the simple resistance boundary conditions
used, which reflect any incoming wave without smoothing
them. We did not incorporate peripheral compliances to
allow accurate quantification of the parameters of the
terminal boundary conditions. Reflected waves in the
peripheral vessels do not have much effect on aortic flows
because they get ‘trapped’ as they propagate towards the
root of the system. The trapping occurs because the
junctions are well-matched for forward waves, which
means that they are not well-matched for backward waves
(Sherwin et al., 2003b).

Accurate measurements of the parameters used in the
numerical algorithm were obtained as described in Section
2.1.2. In addition, wave speeds were measured from the
linear part of the experimental pressure–velocity loops
(Khir et al., 2001). However, the wave speeds obtained
from this technique were not reliable because of the lack of
accuracy in the flow measurements in some locations.
Accurate flow measurements rely upon close contact
between the tube and the flow transducer, and since only
five different sizes of transducers were available, some
mismatches were inevitable at the 70 different measurement
sites. This problem could have been avoided by suspending
the model in a shallow water tank, which was impractical
due to the scale of the model.

Interference from the main supply was sometimes
present but was removed by a low-pass filter during the
processing of the data. Some noise was introduced to the
model through its contact with the table. This noise was
relatively small and probably could have been avoided by
suspending the model in a shallow water tank.

In the tensile tests negligible anisotropy was found
among specimen sheets from the same sample cut at
different angles (0�, 45� and 90�) with respect to the
principal painting direction. A constant value of
the Young’s modulus was used for all vessels because the
tensile tests showed insignificant variation with the vessel
wall thickness.

4.2. Numerical model

Our results reveal the ability of the nonlinear, 1-D model
to capture the main features of the experimental pulse
waves, not only along the aorta, as has already been shown
in Segers and Verdonck (2000) and Alastruey (2006), but
also in more peripheral vessels, where the frequency of the
numerical oscillations surprisingly mimics the experimental
results. The average relative errors of the numerical
predictions are smaller than 4% in pressure and 19% in
the flow at all 70 locations studied. In general, relative
errors are smaller at locations close to the inflow boundary
condition, where the numerical flow matches its experi-
mental counterpart. The larger relative errors in the flow
predictions compared to their pressure counterparts can be
explained because experimental flow measurements are less
precise than experimental pressure measurements. As
discussed in Section 4.1, this is primarily a consequence
of the mismatch between the silicone tube and the flow
transducer.
Discrepancies between experimental and numerical

results arise from the uncertainties in the experimental
measurements and the assumptions and simplifications of
the 1-D formulation. We showed that these discrepancies
cannot be a consequence of having neglected energy losses
at junctions (Section 3.2). In addition, the higher amplitude
of the numerical peripheral oscillations can only be
partially explained by the presence of peripheral compli-
ance in the overflow reservoirs (Section 3.3). The effect of
neglecting the curvature of the vessels has not been
analysed, although it should be secondary because of the
geometry of our experimental system. Therefore, we
conclude that the viscoelasticity of the silicone wall might
have an important effect on damping peripheral oscilla-
tions, which will be addressed in a future work.

5. Conclusions

We have shown that the 1-D formulation captures the
main features of pressure and flow pulse wave propagation
in large vessels if accurate measurements of the geometry,
wall compliance and boundary conditions of the system are
provided. Our results show that energy losses at bifurca-
tions have only a secondary effect on the blood flow in
large arteries, and viscoelasticity might have a significant
effect on the pulse waveforms in peripheral vessels.
Accurate simultaneous pressure and flow measurements
are essential to determine pulse wave speeds from
pressure–flow loops.
This work is the first attempt to verify the nonlinear, 1-D

formulation against a well-defined bifurcating network of
vessels. We have demonstrated that the measured pressure
and flow waveforms are accurately captured by the
numerical simulation. Relative errors in pressure and the
flow are smaller than 4% and 19%, respectively. We
believe that the larger relative error in the flow can
primarily be attributed to flow measurement uncertainty.
The results presented here provide additional support for
the use of the mathematical model, and its numerical
simulation, to model clinically relevant problems (e.g.,
Stergiopulos et al., 1992; Smith et al., 2001; Steele et al.,
2003; Franke et al., 2003; Alastruey et al., 2006, 2007a, b).
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