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Consider a wavefront propagating forward in a vessel with a discontinuity in its area
and/or elastic properties. Assume that the wavefront produces changes in pressure
∆P0 and velocity ∆U0.
Before the wave reaches the discontinuity the conditions in the vessel are

Mass and energy conservation at the discontinuity require

U0A0 = U1A1

P0 + 1
2
ρU2

0 = P1 + 1
2
ρU2

1

The second equation follows from the Bernoulli equation and requires that the total
pressure be constant across the discontinuity.
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After the wavefront encounters the discontinuity, a reflected wave with changes δP0

and δP0 will propagate backward in vessel 0 and a transmitted wave with changes δP1

and δP1 will propagate forward in vessel 1.

Mass and energy conservation across the discontinuity now require

(U0 + ∆U0 + δU0)(A0 + ∆A0 + δA0) = (U1 + δU1)(A1 + δA1)

(P0 + ∆P0 + δP0) + 1
2
ρ(U0 + ∆U0 + δU0)

2 = (P1 + δP1) + 1
2
ρ(U1 + δU1)

2

We must now solve for the unknown changes δ• in terms of the known incident
changes ∆•.
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Expanding the products in the ’after’ equation, ignoring terms of second order in the
changes and using the ’before’ equation to eliminate the O(1) terms, we are left with
two equations of first order in the changes.
Changes in area can be written in terms of changes in pressure using the definition of
wave speed c2 = 1

ρD
where D = 1

A
dA
dP

dA =
A

ρc2
dP

Similarly, the water hammer equations can be used to eliminate changes in velocity in
terms of changes in pressure (remembering which waves are forward and which are
backward)

∆P0 = ρc0∆U0, δP0 = −ρc0δU0, δP1 = ρc1δU1

The result is two equations for δP0 and δP1 in terms of the incident pressure changes
∆P0

A0

c0
(1 + m0)∆P0 − A0

c0
(1−m0)δP0 =

A1

c1
(1 + m1)δP1

(1 + m0)∆P0 + (1−m0)δP0 = (1 + m1)δP1

where m0 = U0
c0

and m1 = U1
c1

are the Mach numbers in the two sections of the vessel.
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These equations can be solved for the reflection coefficient

R =
δP0

∆P0
=

(
1+m0

1−m0

) (
A0
c0
− A1

c1

)
(

A0
c0

+ A1
c1

)

The transmission coefficient follows by substitution into energy equation

T =
δP1

∆P0
=

(
1+m0

1+m1

)
+

(
1−m0

1+m1

)
R

In arterial flows, the blood velocity is normally much smaller than the wave speed,
m << 1, and so these relationships can be written with excellent accuracy

R =

(
A0
c0
− A1

c1

)
(

A0
c0

+ A1
c1

)

T = 1 + R

These are equivalent to the Kirchoff laws in electrical circuits if we identify A
c

as the
admittance.
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The reflection coefficient for a bifurcation can be obtained following the same steps.
Defining the parent vessel as 0 and the daughter vessels as 1 and 2, the conditions
before the wavefront arrives at the bifurcation are

The conservation of mass and energy for the bifurcation is

U0A0 = U1A1 + U2A2

P0 + 1
2
ρU2

0 = P1 + 1
2
ρU2

1 = P2 + 1
2
ρU2

2

The first equation says that the net volume flow out of the parent vessel is equal to
the net volume flow into the daughter vessels. The energy equation is true along a
streamline and so the equation must be true for each daughter vessel individually.
After the wavefront has reached the bifurcation, the conditions are
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The equivalent conservation equations do not fit on the page, but are straightforward
to write. Following the same steps - expanding the nonlinear term, ignoring terms of
second order and cancelling terms in the ’after’ equation using the ’before’ equation -
we obtain three first order equations for the changes in the three vessels. Also using
the water hammer equation and the definition of the wave speed, we obtain three
equations for the three unknowns δP0, δP1 and δP2. These equations have the
solution

R =
δP0

∆P0
=

(
1+m0

1−m0

) (
A0
c0
− A1

c1
− A2

c2

)
(

A0
c0

+ A1
c1

+ A2
c2

)

and the transmission coefficients

Tn =
δPn

∆P0
=

(
1+m0

1+mn

)
+

(
1−m0

1+mn

)
R n = 1, 2

For m << 1, these relationships become

R =

(
A0
c0
− A1

c1
− A2

c2

)
(

A0
c0

+ A1
c1

+ A2
c2

)

Tn = 1 + Rn n = 1, 2
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These relationships are very important in the arteries. Several things should be noted:

1. When m << 1, +1 ≥ R ≥ −1 with R = 1 corresponding to the closed end case
A1 = A2 = 0 and R = −1 corresponding to the open end case A1 or A2 = ∞.

2. The equations are general and can equally well be used to describe backward
wavefronts approaching the bifurcation in either daughter tube. For m << 1, the
appropriate reflection coefficients can be obtained simply by rotating the indices.
For the general case, care must be taken to use the appropriately signed Mach
numbers.

3. The special case of R = 0 is termed the well-matched condition and it means
that the wave will pass through the bifurcation without any change. There is
some evidence that many arterial bifurcations are well-matched for forward waves.

4. It follows from the form of the equation for R that a bifurcation that is
well-matched for waves in one vessel cannot be well-matched for waves
approaching in the other vessels. Therefore an arterial bifurcation that is
well-matched for forward waves will produce a non-zero reflection coefficient for
waves approaching it from either daughter vessel. We will see later that this leads
to the phenomenon of wave trapping that has important ramifications for arterial
haemodynamics.


