page  

Part I : Background mechanics

3  

1 PARTICLES AND CONTINUOUS MATERIALS

7  

2 PARTICLE MECHANICS

7   2.1 Position
8   2.2 Velocity
12   2.3 Acceleration
14   2.4 Newton's laws of motion: mass and force
19   2.5 Momentum
20   2.6 Work and energy
23  

3 UNITS

23   3.1 The difference between units and dimensions
24   3.2 Mass, length, and time as fundamental units
25   3.3 The inconvenience of force as a fundamental unit
26   3.4 Energy and heat
26   3.5 The concept of substance
26   3.6 Dimensional homogeneity and consistency of units
26   3.7 The use of volume and flow-rate in physiology
27   3.8 Systeme International (SI)
30  

4 BASIC IDEAS IN FLUID MECHANICS

30   4.1 Stress
32   4.2 Hydrostatic pressure
34   4.3 Stress in a moving fluid: viscosity
37   4.4 The equation of motion of a fluid
39   4.5 Convective and local acceleration
40   4.6 Conservation of mass
41   4.7 Bernoulli's theorem
44  

5 FLOW IN PIPES AND AROUND OBJECTS

44   5.1 Poiseuille flow in a tube
49   5.2 Flow in the entrance region
51   5.3 The idea of the boundary layer
54   5.4 Reynolds number
55   5.5 Turbulence in pipe flow
57   5.6 Unsteady flow in a very long pipe
60   5.7 Effects of constrictions on pipe flow characteristics
65   5.8 Flow in curved pipes
68   5.9 Flow past bodies
79  

6 DIMENSIONAL ANALYSIS

80   6.1 Similarity and the idea of scale models
80   6.2 Some examples of scaling in biological systems
82   6.3 A method of obtaining homogeneous relationships between variables
86  

7 SOLID MECHANICS AND THE PROPERTIES OF BLOOD VESSEL WALLS

86   7.1 Definitions of elastic properties
91   7.2 The properties of blood vessel walls
100   7.3 Statics of an elastic tube
106  

8 OSCILLATIONS AND WAVES

106   8.1 Simple harmonic motion
113   8.2 Simple waves
117   8.3 Damping
121   8.4 Wave reflections and resonance
125   8.5 Linearity
127   8.6 Fourier analysis
130  

9 AN INTRODUCTION TO MASS TRANSFER

131   9.1 Diffusion
135   9.2 The colloidal state
135   9.3 Mass transfer coefficients
137   9.4 Diffusion through pores and membranes
138       9.4.1 Restricted diffusion
139       9.4.2 Active transport
140   9.5 Permeability
140   9.6 Filtration through membranes
141   9.7 Osmosis
143   9.8 A simple mass transfer model
144   9.9 The interaction of bulk flow and diffusion
147       9.9.1 The Schmidt number

 

page

Part II : Mechanics of the circulation

151

10 BLOOD

152 10.1 Viscosity of fluids and suspensions
153     10.1.1 Spherical particles
156     10.1.2 Asymmetric particles
157     10.1.3 Viscosity of plasma
158 10.2 Osmotic pressure of plasma
159 10.3 The suspended elements
159     10.3.1 The blood cells
160     10.3.2 Red cells
167     10.3.3 White cells
167     10.3.4 Platelets
169 10.4 Blood coagulation
170 10.5 Thrombosis
171 10.6 Mechanical properties of whole blood
172     10.6.1 Sedimentation of red cells
173     10.6.2 Principles of measurement of blood viscosity
176     10.6.3 Viscous properties of blood
181

11 THE HEART

182 11.1 Anatomy of the heart
186 11.2 The cardiac cycle
186     11.2.1 Electrical events
188     11.2.2 Mechanical events
190 11.3 Properties of cardiac muscle
190     11.3.1 Structure
193     11.3.2 Static mechanical properties of cardiac muscle
195     11.3.3 Dynamic mechanical properties of cardiac muscle
205     11.3.4 Summary
205 11.4 Mechanical behaviour of the intact heart
208     11.4.1 Left ventricular shape and wall-stresses
213     11.4.2 Right ventricular shape
214     11.4.3 The mechanics of the entire ventricle
228     11.4.4 Summary
230 11.5 Fluid mechanical aspects of cardiac function
230     11.5.1 Right heart
231     11.5.2 Left heart
238     11.5.3 Sounds and murmurs in the heart
243

12 THE SYSTEMIC ARTERIES

244 12.1 Anatomy and structure
244     12.1.1 The anatomy of large blood vessels
246     12.1.2 Branching ratios and angles
250     12.1.3 The structure of the arterial wall
255     12.1.4 Arterial wall thickness
258     12.1.5 Changes in the arterial wall with age
261 12.2 Blood pressure and flow in systemic arteries
261     12.2.1 Transmural pressures
265     12.2.2 Unsteady pressure in large arteries
268     12.2.3 Flow
271     12.2.4 Terminology
272     12.2.5 Fourier analysis
274 12.3 Wave propagation in arteries
276     12.3.1 The Windkessel model
277     12.3.2 The propagation of the pressure wave
278     12.3.3 Determination of the wave-speed
280     12.3.4 Comparison of theory with experiment
282     12.3.5 Further limitations of the simple elastic model
284 12.4 Reflection and transmission of the wave at junctions
284     12.4.1 Reflection at a single junction
287     12.4.2 The matching of impedances
289     12.4.3 Positive and negative reflection
291     12.4.4 Physiological evidence of wave reflections
294     12.4.5 Multiple reflections
297     12.4.6 Interpretation of observed pressure wave-forms in large arteries
301     12.4.7 The effect of taper
303 12.5 The influence of non-linearities
305 12.6 Viscous effects
306     12.6.1 Effect of blood viscosity on flow-rate wave-form
307     12.6.2 Effect of viscosity on wave propagation
310     12.6.3 Effect of wall visco-elasticity
311 12.7 Other types of wave
312 12.8 Flow patterns in arteries
313     12.8.1 Velocity profiles in large arteries
319     12.8.2 Physical mechanisms underlying the velocity profiles
328     12.8.3 Stability and turbulence
335 12.9 Mixing and mass transport in arteries
335     12.9.1 Mixing in the heart and large blood vessels
340     12.9.2 Mass transport across artery walls
346 12.10 Appendix: Impedance
350

13 THE SYSTEMIC MICROCIRCULATION

351 13.1 The organization of a microvascular bed
351     13.1.1 The arteriolar system
352     13.1.2 The capillary system
357     13.1.3 The venular system
357     13.1.4 The lymphatic system
357 13.2 The structure of the vessels of the microcirculation
358     13.2.1 The arterioles
361     13.2.2 The capillaries
363     13.2.3 The venules
364     13.2.4 The lymphatics
369     13.2.5 The junctions between vascular endothelial cells
370     13.2.6 The pinocytic vesicles
370     13.2.7 The interstitial space
371 13.3 Static mechanical properties of the microcirculatory vessels
371     13.3.1 Elastic properties of the arterioles
374     13.3.2 Mechanical properties of the capillaries
375     13.3.3 Elastic properties of the venules
376 13.4 Pressure in the microcirculation
376     13.4.1 The distribution of pressure
382     13.4.2 The propagation of cardiac pressure oscillations
383     13.4.3 Pressure in the interstitial space
385 13.5 Flow in models and in the large vessels of the microcirculation
386     13.5.1 The motion of single particles at very low flow-rates
399     13.5.2 The motion of single particles at high flow-rates
390     13.5.3 The motion of single red blood cells in Poiseuille flow
391     13.5.4 The flow of concentrated suspensions of particles and red cells
394     13.5.5 The viscosity of whole blood
394     13.5.6 Radial dispersion of red cells
396     13.5.7 The cell free layer
399     13.5.8 Velocity profiles in vessels
400 13.6 Blood flow in capillaries
402     13.6.1 Positive clearance
403     13.6.2 Negative clearance
407 13.7 Mass transport in the microcirculation
408     13.7.1 Filtration and re-absorption of water within single capillaries
413     13.7.2 Capillary pressure and filtration of water in whole organ preparations
415     13.7.3 The dependence of plasma oncotic pressure on protein concentration
416     13.7.4 Evidence for the existence of filtration pores in the capillary wall
416     13.7.5 Diffusion across the capillary wall
418     13.7.6 Methods of measuring permeability coefficients
425     13.7.7 The diffusion pathway across the capillary wall
426     13.7.8 The Pappenheimer equivalent pore theory
428     13.7.9 The pathway for water transport across the capillary wall
429     13.7.10 The transport of large molecules
434

14 THE SYSTEMIC VEINS

435 14.1 Anatomy
437 14.2 Transmural pressure and static elastic properties
446     14.2.1 The resistance to bending of a tube wall
449 14.3 Dynamics of blood flow in large veins
449     14.3.1 Observed pressure and flow-rate wave-forms
452     14.3.2 Wave propagation in veins
458     14.3.3 Flow patterns and velocity profiles in veins
460 14.4 Flow in collapsible tubes
461     14.4.1 Model experiments
465     14.4.2 Mechanisms
467     14.4.3 Physiological evidence: Korotkoff sounds
469 14.5 Mechanics of venous beds
469     14.5.1 Elevation of a venous bed above the level of the heart
470     14.5.2 Contraction of skeletal muscle
472     14.5.3 Respiratory manoeuvres
476

15 THE PULMONARY CIRCULATION

477 15.1 Anatomy
477     15.1.1 Pulmonary circulation
484     15.1.2 Bronchial circulation
485 15.2 Transmural pressure and static elastic properties of vessels
485     15.2.1 Intravascular pressure
485     15.2.2 Perivascular pressure
489     15.2.3 Elastic properties
493     15.2.4 Pulmonary blood volume
498 15.3 Dynamics of blood flow in large pulmonary vessels
498     15.3.1 Wave-forms
501     15.3.2 Wave propagation
503     15.3.3 Flow patterns
504 15.4 Pulmonary vascular resistance
504     15.4.1 Flow in the alveolar sheet
508     15.4.2 Zonal distribution of blood flow
511     15.4.3 Effect of lung mechanics

515 Index